FeNeC: Enhancing Continual Learning via Feature Clustering with Neighbor- or Logit-Based Classification
- URL: http://arxiv.org/abs/2503.14301v2
- Date: Mon, 14 Apr 2025 09:20:57 GMT
- Title: FeNeC: Enhancing Continual Learning via Feature Clustering with Neighbor- or Logit-Based Classification
- Authors: Kamil Książek, Hubert Jastrzębski, Bartosz Trojan, Krzysztof Pniaczek, Michał Karp, Jacek Tabor,
- Abstract summary: We introduce FeNeC (Feature Neighborhood) and FeNeC-Log, incorporating its variant based on the log-likelihood function.<n>Our approach generalizes the existing concept by clustering to capture greater intra-class variability.<n>We demonstrate that two FeNeC variants achieve competitive performance in scenarios where task identities are unknown.
- Score: 6.720605329045581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability of deep learning models to learn continuously is essential for adapting to new data categories and evolving data distributions. In recent years, approaches leveraging frozen feature extractors after an initial learning phase have been extensively studied. Many of these methods estimate per-class covariance matrices and prototypes based on backbone-derived feature representations. Within this paradigm, we introduce FeNeC (Feature Neighborhood Classifier) and FeNeC-Log, its variant based on the log-likelihood function. Our approach generalizes the existing concept by incorporating data clustering to capture greater intra-class variability. Utilizing the Mahalanobis distance, our models classify samples either through a nearest neighbor approach or trainable logit values assigned to consecutive classes. Our proposition may be reduced to the existing approaches in a special case while extending them with the ability of more flexible adaptation to data. We demonstrate that two FeNeC variants achieve competitive performance in scenarios where task identities are unknown and establish state-of-the-art results on several benchmarks.
Related papers
- Ensemble Methods for Sequence Classification with Hidden Markov Models [8.241486511994202]
We present a lightweight approach to sequence classification using Ensemble Methods for Hidden Markov Models (HMMs)
HMMs offer significant advantages in scenarios with imbalanced or smaller datasets due to their simplicity, interpretability, and efficiency.
Our ensemble-based scoring method enables the comparison of sequences of any length and improves performance on imbalanced datasets.
arXiv Detail & Related papers (2024-09-11T20:59:32Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - FeCAM: Exploiting the Heterogeneity of Class Distributions in
Exemplar-Free Continual Learning [21.088762527081883]
Exemplar-free class-incremental learning (CIL) poses several challenges since it prohibits the rehearsal of data from previous tasks.
Recent approaches to incrementally learning the classifier by freezing the feature extractor after the first task have gained much attention.
We explore prototypical networks for CIL, which generate new class prototypes using the frozen feature extractor and classify the features based on the Euclidean distance to the prototypes.
arXiv Detail & Related papers (2023-09-25T11:54:33Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Sequential Ensembling for Semantic Segmentation [4.030520171276982]
We benchmark the popular ensembling approach of combining predictions of multiple, independently-trained, state-of-the-art models.
We propose a novel method inspired by boosting to sequentially ensemble networks that significantly outperforms the naive ensemble baseline.
arXiv Detail & Related papers (2022-10-08T22:13:59Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Exploring Category-correlated Feature for Few-shot Image Classification [27.13708881431794]
We present a simple yet effective feature rectification method by exploring the category correlation between novel and base classes as the prior knowledge.
The proposed approach consistently obtains considerable performance gains on three widely used benchmarks.
arXiv Detail & Related papers (2021-12-14T08:25:24Z) - Few-shot Learning via Dependency Maximization and Instance Discriminant
Analysis [21.8311401851523]
We study the few-shot learning problem, where a model learns to recognize new objects with extremely few labeled data per category.
We propose a simple approach to exploit unlabeled data accompanying the few-shot task for improving few-shot performance.
arXiv Detail & Related papers (2021-09-07T02:19:01Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition
from a Domain Adaptation Perspective [98.70226503904402]
Object frequency in the real world often follows a power law, leading to a mismatch between datasets with long-tailed class distributions.
We propose to augment the classic class-balanced learning by explicitly estimating the differences between the class-conditioned distributions with a meta-learning approach.
arXiv Detail & Related papers (2020-03-24T11:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.