EvolvingGrasp: Evolutionary Grasp Generation via Efficient Preference Alignment
- URL: http://arxiv.org/abs/2503.14329v2
- Date: Wed, 19 Mar 2025 08:55:21 GMT
- Title: EvolvingGrasp: Evolutionary Grasp Generation via Efficient Preference Alignment
- Authors: Yufei Zhu, Yiming Zhong, Zemin Yang, Peishan Cong, Jingyi Yu, Xinge Zhu, Yuexin Ma,
- Abstract summary: EvolvingGrasp is an evolutionary grasp generation method that continuously enhances grasping performance through preference alignment.<n>Our results validate that EvolvingGrasp enables evolutionary grasp generation, ensuring robust, physically feasible, and preference-aligned grasping in both simulation and real scenarios.
- Score: 42.41408547627677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dexterous robotic hands often struggle to generalize effectively in complex environments due to the limitations of models trained on low-diversity data. However, the real world presents an inherently unbounded range of scenarios, making it impractical to account for every possible variation. A natural solution is to enable robots learning from experience in complex environments, an approach akin to evolution, where systems improve through continuous feedback, learning from both failures and successes, and iterating toward optimal performance. Motivated by this, we propose EvolvingGrasp, an evolutionary grasp generation method that continuously enhances grasping performance through efficient preference alignment. Specifically, we introduce Handpose wise Preference Optimization (HPO), which allows the model to continuously align with preferences from both positive and negative feedback while progressively refining its grasping strategies. To further enhance efficiency and reliability during online adjustments, we incorporate a Physics-aware Consistency Model within HPO, which accelerates inference, reduces the number of timesteps needed for preference finetuning, and ensures physical plausibility throughout the process. Extensive experiments across four benchmark datasets demonstrate state of the art performance of our method in grasp success rate and sampling efficiency. Our results validate that EvolvingGrasp enables evolutionary grasp generation, ensuring robust, physically feasible, and preference-aligned grasping in both simulation and real scenarios.
Related papers
- ToolACE-R: Tool Learning with Adaptive Self-Refinement [84.69651852838794]
Tool learning allows Large Language Models to leverage external tools for solving complex user tasks.
We propose ToolACE-R, a novel method that introduces adaptive self-refinement for tool invocations.
Our results demonstrate the effectiveness of the proposed method, which is compatible with base models of various sizes.
arXiv Detail & Related papers (2025-04-02T06:38:56Z) - Evolutionary Policy Optimization [47.30139909878251]
Current on-policy methods fail to fully leverage the benefits of parallelized environments.
EPO is a novel policy gradient algorithm that combines the strengths of EA and policy gradients.
We show that EPO significantly improves performance across diverse and challenging environments.
arXiv Detail & Related papers (2025-03-24T18:08:54Z) - Evolution-based Region Adversarial Prompt Learning for Robustness Enhancement in Vision-Language Models [52.8949080772873]
We propose an evolution-based region adversarial prompt tuning method called ER-APT.<n>In each training iteration, we first generate AEs using traditional gradient-based methods.<n> Subsequently, a genetic evolution mechanism incorporating selection, mutation, and crossover is applied to optimize the AEs.<n>The final evolved AEs are used for prompt tuning, achieving region-based adversarial optimization instead of conventional single-point adversarial prompt tuning.
arXiv Detail & Related papers (2025-03-17T07:08:47Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
We introduce a novel framework for learning world models.<n>By providing a scalable and robust framework, we pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
Federated learning (FL) has emerged as a widely adopted training paradigm for privacy-preserving machine learning.
This paper introduces federated adaptive asynchronous optimization, named FADAS, a novel method that incorporates asynchronous updates into adaptive federated optimization with provable guarantees.
We rigorously establish the convergence rate of the proposed algorithms and empirical results demonstrate the superior performance of FADAS over other asynchronous FL baselines.
arXiv Detail & Related papers (2024-07-25T20:02:57Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments [9.098403098464704]
Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems.
This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems.
Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2022-11-05T11:19:50Z) - Optimization-Derived Learning with Essential Convergence Analysis of
Training and Hyper-training [52.39882976848064]
We design a Generalized Krasnoselskii-Mann (GKM) scheme based on fixed-point iterations as our fundamental ODL module.
Under the GKM scheme, a Bilevel Meta Optimization (BMO) algorithmic framework is constructed to solve the optimal training and hyper-training variables together.
arXiv Detail & Related papers (2022-06-16T01:50:25Z) - Surrogate-assisted distributed swarm optimisation for computationally
expensive geoscientific models [1.8627798812601288]
We implement surrogate-based estimation of fitness evaluation in distributed swarm optimisation over a parallel computing architecture.
Our results demonstrate very promising results for benchmark functions and the Badlands landscape evolution model.
The major contribution of the paper is in the application of surrogate-based optimisation for geoscientific models.
arXiv Detail & Related papers (2022-01-18T09:37:14Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.