Spatio-Temporal Graph Neural Networks for Infant Language Acquisition Prediction
- URL: http://arxiv.org/abs/2503.14341v1
- Date: Tue, 18 Mar 2025 15:21:27 GMT
- Title: Spatio-Temporal Graph Neural Networks for Infant Language Acquisition Prediction
- Authors: Andrew Roxburgh, Floriana Grasso, Terry R. Payne,
- Abstract summary: A model of language acquisition for infants and young children can be constructed and adapted for use in a Spatio-Temporal Graph Convolutional Network (STGCN)<n>We introduce a novel approach for predicting child vocabulary acquisition, and evaluate the efficacy of such a model with respect to the different types of linguistic relationships that occur during language acquisition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the words that a child is going to learn next can be useful for boosting language acquisition, and such predictions have been shown to be possible with both neural network techniques (looking at changes in the vocabulary state over time) and graph model (looking at data pertaining to the relationships between words). However, these models do not fully capture the complexity of the language learning process of an infant when used in isolation. In this paper, we examine how a model of language acquisition for infants and young children can be constructed and adapted for use in a Spatio-Temporal Graph Convolutional Network (STGCN), taking into account the different types of linguistic relationships that occur during child language learning. We introduce a novel approach for predicting child vocabulary acquisition, and evaluate the efficacy of such a model with respect to the different types of linguistic relationships that occur during language acquisition, resulting in insightful observations on model calibration and norm selection. An evaluation of this model found that the mean accuracy of models for predicting new words when using sensorimotor relationships (0.733) and semantic relationships (0.729) were found to be superior to that observed with a 2-layer Feed-forward neural network. Furthermore, the high recall for some relationships suggested that some relationships (e.g. visual) were superior in identifying a larger proportion of relevant words that a child should subsequently learn than others (such as auditory).
Related papers
- A Distributional Perspective on Word Learning in Neural Language Models [57.41607944290822]
There are no widely agreed-upon metrics for word learning in language models.<n>We argue that distributional signatures studied in prior work fail to capture key distributional information.<n>We obtain learning trajectories for a selection of small language models we train from scratch.
arXiv Detail & Related papers (2025-02-09T13:15:59Z) - Developmental Predictive Coding Model for Early Infancy Mono and Bilingual Vocal Continual Learning [69.8008228833895]
We propose a small-sized generative neural network equipped with a continual learning mechanism.<n>Our model prioritizes interpretability and demonstrates the advantages of online learning.
arXiv Detail & Related papers (2024-12-23T10:23:47Z) - Is Child-Directed Speech Effective Training Data for Language Models? [34.46268640655943]
We train GPT-2 and RoBERTa models on 29M words of English child-directed speech.
We test whether the global developmental ordering or the local discourse ordering of children's training data supports high performance relative to other datasets.
These findings support the hypothesis that, rather than proceeding from better data, the child's learning algorithm is substantially more data-efficient than current language modeling techniques.
arXiv Detail & Related papers (2024-08-07T08:18:51Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
Modern neural language models (LMs) are powerful tools for modeling human sentence production and comprehension.
But to achieve these results, LMs must be trained in distinctly un-human-like ways.
Do models trained more naturalistically -- with grounded supervision -- exhibit more humanlike language learning?
We investigate this question in the context of word learning, a key sub-task in language acquisition.
arXiv Detail & Related papers (2023-10-20T03:33:36Z) - Dependency-based Mixture Language Models [53.152011258252315]
We introduce the Dependency-based Mixture Language Models.
In detail, we first train neural language models with a novel dependency modeling objective.
We then formulate the next-token probability by mixing the previous dependency modeling probability distributions with self-attention.
arXiv Detail & Related papers (2022-03-19T06:28:30Z) - Word Acquisition in Neural Language Models [0.38073142980733]
We investigate how neural language models acquire individual words during training, extracting learning curves and ages of acquisition for over 600 words.
We find that the effects of concreteness, word length, and lexical class are pointedly different in children and language models.
arXiv Detail & Related papers (2021-10-05T23:26:16Z) - Evaluating Models of Robust Word Recognition with Serial Reproduction [8.17947290421835]
We compare several broad-coverage probabilistic generative language models in their ability to capture human linguistic expectations.
We find that those models that make use of abstract representations of preceding linguistic context best predict the changes made by people in the course of serial reproduction.
arXiv Detail & Related papers (2021-01-24T20:16:12Z) - A Visuospatial Dataset for Naturalistic Verb Learning [18.654373173232205]
We introduce a new dataset for training and evaluating grounded language models.
Our data is collected within a virtual reality environment and is designed to emulate the quality of language data to which a pre-verbal child is likely to have access.
We use the collected data to compare several distributional semantics models for verb learning.
arXiv Detail & Related papers (2020-10-28T20:47:13Z) - Constructing Taxonomies from Pretrained Language Models [52.53846972667636]
We present a method for constructing taxonomic trees (e.g., WordNet) using pretrained language models.
Our approach is composed of two modules, one that predicts parenthood relations and another that reconciles those predictions into trees.
We train our model on subtrees sampled from WordNet, and test on non-overlapping WordNet subtrees.
arXiv Detail & Related papers (2020-10-24T07:16:21Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
We studied whether a modern artificial neural network trained with "deep learning" methods mimics a central aspect of human sentence processing.
Although the network was solely trained to predict the next word in a large corpus, analysis showed the emergence of specialized units that successfully handled local and long-distance syntactic agreement.
We tested the model's predictions in a behavioral experiment where humans detected violations in number agreement in sentences with systematic variations in the singular/plural status of multiple nouns.
arXiv Detail & Related papers (2020-06-19T12:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.