MagicComp: Training-free Dual-Phase Refinement for Compositional Video Generation
- URL: http://arxiv.org/abs/2503.14428v1
- Date: Tue, 18 Mar 2025 17:02:14 GMT
- Title: MagicComp: Training-free Dual-Phase Refinement for Compositional Video Generation
- Authors: Hongyu Zhang, Yufan Deng, Shenghai Yuan, Peng Jin, Zesen Cheng, Yian Zhao, Chang Liu, Jie Chen,
- Abstract summary: MagicComp is a training-free method that enhances T2V generation through dual-phase refinement.<n>MagicComp is a model-agnostic and versatile approach, which can be seamlessly integrated into existing T2V architectures.
- Score: 19.340437669928814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-video (T2V) generation has made significant strides with diffusion models. However, existing methods still struggle with accurately binding attributes, determining spatial relationships, and capturing complex action interactions between multiple subjects. To address these limitations, we propose MagicComp, a training-free method that enhances compositional T2V generation through dual-phase refinement. Specifically, (1) During the Conditioning Stage: We introduce the Semantic Anchor Disambiguation to reinforces subject-specific semantics and resolve inter-subject ambiguity by progressively injecting the directional vectors of semantic anchors into original text embedding; (2) During the Denoising Stage: We propose Dynamic Layout Fusion Attention, which integrates grounding priors and model-adaptive spatial perception to flexibly bind subjects to their spatiotemporal regions through masked attention modulation. Furthermore, MagicComp is a model-agnostic and versatile approach, which can be seamlessly integrated into existing T2V architectures. Extensive experiments on T2V-CompBench and VBench demonstrate that MagicComp outperforms state-of-the-art methods, highlighting its potential for applications such as complex prompt-based and trajectory-controllable video generation. Project page: https://hong-yu-zhang.github.io/MagicComp-Page/.
Related papers
- Extrapolating and Decoupling Image-to-Video Generation Models: Motion Modeling is Easier Than You Think [24.308538128761985]
Image-to-Video (I2V) generation aims to synthesize a video clip according to a given image and condition (e.g., text)<n>Key challenge of this task lies in simultaneously generating natural motions while preserving the original appearance of the images.<n>We propose a novel Extrapolating and Decoupling framework, which introduces model merging techniques to the I2V domain for the first time.
arXiv Detail & Related papers (2025-03-02T16:06:16Z) - VideoLights: Feature Refinement and Cross-Task Alignment Transformer for Joint Video Highlight Detection and Moment Retrieval [8.908777234657046]
Large-language and vision-language models (LLM/LVLMs) have gained prominence across various domains.
Here we propose VideoLights, a novel HD/MR framework addressing these limitations through (i) Convolutional Projection and Feature Refinement modules.
Comprehensive experiments on QVHighlights, TVSum, and Charades-STA benchmarks demonstrate state-of-the-art performance.
arXiv Detail & Related papers (2024-12-02T14:45:53Z) - StarVid: Enhancing Semantic Alignment in Video Diffusion Models via Spatial and SynTactic Guided Attention Refocusing [40.50917266880829]
We propose textbfStarVid, a plug-and-play, training-free method that improves semantic alignment between multiple subjects, their motions, and text prompts in T2V models.<n>StarVid first leverages the spatial reasoning capabilities of large language models (LLMs) for two-stage motion trajectory planning based on text prompts.
arXiv Detail & Related papers (2024-09-23T17:56:03Z) - Vivid-ZOO: Multi-View Video Generation with Diffusion Model [76.96449336578286]
New challenges lie in the lack of massive captioned multi-view videos and the complexity of modeling such multi-dimensional distribution.
We propose a novel diffusion-based pipeline that generates high-quality multi-view videos centered around a dynamic 3D object from text.
arXiv Detail & Related papers (2024-06-12T21:44:04Z) - VideoTetris: Towards Compositional Text-to-Video Generation [45.395598467837374]
VideoTetris is a framework that enables compositional T2V generation.
We show that VideoTetris achieves impressive qualitative and quantitative results in T2V generation.
arXiv Detail & Related papers (2024-06-06T17:25:33Z) - Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation [49.298187741014345]
Current methods intertwine spatial content and temporal dynamics together, leading to an increased complexity of text-to-video generation (T2V)
We propose HiGen, a diffusion model-based method that improves performance by decoupling the spatial and temporal factors of videos from two perspectives.
arXiv Detail & Related papers (2023-12-07T17:59:07Z) - Dysen-VDM: Empowering Dynamics-aware Text-to-Video Diffusion with LLMs [112.39389727164594]
Text-to-video (T2V) synthesis has gained increasing attention in the community, in which the recently emerged diffusion models (DMs) have promisingly shown stronger performance than the past approaches.
While existing state-of-the-art DMs are competent to achieve high-resolution video generation, they may largely suffer from key limitations (e.g., action occurrence disorders, crude video motions) with respect to the temporal dynamics modeling, one of the crux of video synthesis.
In this work, we investigate strengthening awareness of video dynamics for DMs, for high-quality T2V generation
arXiv Detail & Related papers (2023-08-26T08:31:48Z) - Boost Video Frame Interpolation via Motion Adaptation [73.42573856943923]
Video frame (VFI) is a challenging task that aims to generate intermediate frames between two consecutive frames in a video.
Existing learning-based VFI methods have achieved great success, but they still suffer from limited generalization ability.
We propose a novel optimization-based VFI method that can adapt to unseen motions at test time.
arXiv Detail & Related papers (2023-06-24T10:44:02Z) - TTVFI: Learning Trajectory-Aware Transformer for Video Frame
Interpolation [50.49396123016185]
Video frame (VFI) aims to synthesize an intermediate frame between two consecutive frames.
We propose a novel Trajectory-aware Transformer for Video Frame Interpolation (TTVFI)
Our method outperforms other state-of-the-art methods in four widely-used VFI benchmarks.
arXiv Detail & Related papers (2022-07-19T03:37:49Z) - Modeling Motion with Multi-Modal Features for Text-Based Video
Segmentation [56.41614987789537]
Text-based video segmentation aims to segment the target object in a video based on a describing sentence.
We propose a method to fuse and align appearance, motion, and linguistic features to achieve accurate segmentation.
arXiv Detail & Related papers (2022-04-06T02:42:33Z) - Exploring Intra- and Inter-Video Relation for Surgical Semantic Scene
Segmentation [58.74791043631219]
We propose a novel framework STswinCL that explores the complementary intra- and inter-video relations to boost segmentation performance.
We extensively validate our approach on two public surgical video benchmarks, including EndoVis18 Challenge and CaDIS dataset.
Experimental results demonstrate the promising performance of our method, which consistently exceeds previous state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T05:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.