VideoLights: Feature Refinement and Cross-Task Alignment Transformer for Joint Video Highlight Detection and Moment Retrieval
- URL: http://arxiv.org/abs/2412.01558v1
- Date: Mon, 02 Dec 2024 14:45:53 GMT
- Title: VideoLights: Feature Refinement and Cross-Task Alignment Transformer for Joint Video Highlight Detection and Moment Retrieval
- Authors: Dhiman Paul, Md Rizwan Parvez, Nabeel Mohammed, Shafin Rahman,
- Abstract summary: Large-language and vision-language models (LLM/LVLMs) have gained prominence across various domains.
Here we propose VideoLights, a novel HD/MR framework addressing these limitations through (i) Convolutional Projection and Feature Refinement modules.
Comprehensive experiments on QVHighlights, TVSum, and Charades-STA benchmarks demonstrate state-of-the-art performance.
- Score: 8.908777234657046
- License:
- Abstract: Video Highlight Detection and Moment Retrieval (HD/MR) are essential in video analysis. Recent joint prediction transformer models often overlook their cross-task dynamics and video-text alignment and refinement. Moreover, most models typically use limited, uni-directional attention mechanisms, resulting in weakly integrated representations and suboptimal performance in capturing the interdependence between video and text modalities. Although large-language and vision-language models (LLM/LVLMs) have gained prominence across various domains, their application in this field remains relatively underexplored. Here we propose VideoLights, a novel HD/MR framework addressing these limitations through (i) Convolutional Projection and Feature Refinement modules with an alignment loss for better video-text feature alignment, (ii) Bi-Directional Cross-Modal Fusion network for strongly coupled query-aware clip representations, and (iii) Uni-directional joint-task feedback mechanism enhancing both tasks through correlation. In addition, (iv) we introduce hard positive/negative losses for adaptive error penalization and improved learning, and (v) leverage LVLMs like BLIP-2 for enhanced multimodal feature integration and intelligent pretraining using synthetic data generated from LVLMs. Comprehensive experiments on QVHighlights, TVSum, and Charades-STA benchmarks demonstrate state-of-the-art performance. Codes and models are available at https://github.com/dpaul06/VideoLights .
Related papers
- Prompt-A-Video: Prompt Your Video Diffusion Model via Preference-Aligned LLM [54.2320450886902]
Text-to-video models have made remarkable advancements through optimization on high-quality text-video pairs.
Current automatic methods for refining prompts encounter challenges such as Modality-Inconsistency, Cost-Discrepancy, and Model-Unaware.
We introduce Prompt-A-Video, which excels in crafting Video-Centric, Labor-Free and Preference-Aligned prompts tailored to specific video diffusion model.
arXiv Detail & Related papers (2024-12-19T18:32:21Z) - Bridging Vision and Language: Modeling Causality and Temporality in Video Narratives [0.0]
We propose an enhanced framework that integrates a Causal-Temporal Reasoning Module into state-of-the-art LVLMs.
CTRM comprises two key components: the Causal Dynamics (CDE) and the Temporal Learner (TRL)
We design a multi-stage learning strategy to optimize the model, combining pre-training on large-scale video-text datasets.
arXiv Detail & Related papers (2024-12-14T07:28:38Z) - TC-LLaVA: Rethinking the Transfer from Image to Video Understanding with Temporal Considerations [23.188508465235717]
We propose two strategies to enhance the model's capability in video understanding tasks.
The first approach focuses on the enhancement of Rotary Position Embedding (RoPE) with Temporal-Aware Dual RoPE.
The second approach involves enhancing the Attention Mask with the Frame-wise Block Causal Attention Mask.
arXiv Detail & Related papers (2024-09-05T02:54:17Z) - When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding [118.72266141321647]
Cross-Modality Video Coding (CMVC) is a pioneering approach to explore multimodality representation and video generative models in video coding.
During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes.
Experiments indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency.
arXiv Detail & Related papers (2024-08-15T11:36:18Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMA is a generalizable, highly efficient, and modular modality-fusion framework for video reasoning.
We propose a novel progressive multimodal fusion design supported by a lightweight fusion module and modality-sequential training strategy.
We validate our method on 7 video-language reasoning tasks assisted by diverse modalities, including VideoQA and Video-Audio/3D/Touch/Thermal QA.
arXiv Detail & Related papers (2024-02-08T18:27:22Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
Video and text multimodal alignment remains challenging, primarily due to the deficient volume and quality of multimodal instruction-tune data.
We present a novel alignment strategy that employs multimodal AI system to oversee itself called Reinforcement Learning from AI Feedback (RLAIF)
In specific, we propose context-aware reward modeling by providing detailed video descriptions as context during the generation of preference feedback.
arXiv Detail & Related papers (2024-02-06T06:27:40Z) - Generative Video Diffusion for Unseen Cross-Domain Video Moment
Retrieval [58.17315970207874]
Video Moment Retrieval (VMR) requires precise modelling of fine-grained moment-text associations to capture intricate visual-language relationships.
Existing methods resort to joint training on both source and target domain videos for cross-domain applications.
We explore generative video diffusion for fine-grained editing of source videos controlled by the target sentences.
arXiv Detail & Related papers (2024-01-24T09:45:40Z) - Bridging the Gap: A Unified Video Comprehension Framework for Moment
Retrieval and Highlight Detection [45.82453232979516]
Video Moment Retrieval (MR) and Highlight Detection (HD) have attracted significant attention due to the growing demand for video analysis.
Recent approaches treat MR and HD as similar video grounding problems and address them together with transformer-based architecture.
We propose a Unified Video COMprehension framework (UVCOM) to bridge the gap and jointly solve MR and HD effectively.
arXiv Detail & Related papers (2023-11-28T03:55:23Z) - Zero-Shot Video Moment Retrieval from Frozen Vision-Language Models [58.17315970207874]
We propose a zero-shot method for adapting generalisable visual-textual priors from arbitrary VLM to facilitate moment-text alignment.
Experiments conducted on three VMR benchmark datasets demonstrate the notable performance advantages of our zero-shot algorithm.
arXiv Detail & Related papers (2023-09-01T13:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.