Doubly robust identification of treatment effects from multiple environments
- URL: http://arxiv.org/abs/2503.14459v1
- Date: Tue, 18 Mar 2025 17:33:10 GMT
- Title: Doubly robust identification of treatment effects from multiple environments
- Authors: Piersilvio De Bartolomeis, Julia Kostin, Javier Abad, Yixin Wang, Fanny Yang,
- Abstract summary: We propose RAMEN, an algorithm that produces unbiased treatment effect estimates without the need to know or learn the underlying causal graph.<n> RAMEN achieves doubly robust identification: it can identify the treatment effect whenever the causal parents of the treatment or those of the outcome are observed.
- Score: 22.228179404621482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Practical and ethical constraints often require the use of observational data for causal inference, particularly in medicine and social sciences. Yet, observational datasets are prone to confounding, potentially compromising the validity of causal conclusions. While it is possible to correct for biases if the underlying causal graph is known, this is rarely a feasible ask in practical scenarios. A common strategy is to adjust for all available covariates, yet this approach can yield biased treatment effect estimates, especially when post-treatment or unobserved variables are present. We propose RAMEN, an algorithm that produces unbiased treatment effect estimates by leveraging the heterogeneity of multiple data sources without the need to know or learn the underlying causal graph. Notably, RAMEN achieves doubly robust identification: it can identify the treatment effect whenever the causal parents of the treatment or those of the outcome are observed, and the node whose parents are observed satisfies an invariance assumption. Empirical evaluations on synthetic and real-world datasets show that our approach outperforms existing methods.
Related papers
- Identification of Single-Treatment Effects in Factorial Experiments [0.0]
I show that when multiple interventions are randomized in experiments, the effect any single intervention would have outside the experimental setting is not identified absent heroic assumptions.
observational studies and factorial experiments provide information about potential-outcome distributions with zero and multiple interventions.
I show that researchers who rely on this type of design have to justify either linearity of functional forms or specify with Directed Acyclic Graphs how variables are related in the real world.
arXiv Detail & Related papers (2024-05-16T04:01:53Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
Causal effects in populations are often estimated using observational datasets.
We propose a meta-algorithm that attempts to reject observational estimates that are biased.
arXiv Detail & Related papers (2022-09-27T21:47:23Z) - Partial Identification of Dose Responses with Hidden Confounders [25.468473751289036]
Inferring causal effects of continuous-valued treatments from observational data is a crucial task.
We present novel methodology to bound both average and conditional average continuous-valued treatment-effect estimates.
We apply our method to a real-world observational case study to demonstrate the value of identifying dose-dependent causal effects.
arXiv Detail & Related papers (2022-04-24T07:02:21Z) - Combining Observational and Randomized Data for Estimating Heterogeneous
Treatment Effects [82.20189909620899]
Estimating heterogeneous treatment effects is an important problem across many domains.
Currently, most existing works rely exclusively on observational data.
We propose to estimate heterogeneous treatment effects by combining large amounts of observational data and small amounts of randomized data.
arXiv Detail & Related papers (2022-02-25T18:59:54Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - Causes of Effects: Learning individual responses from population data [23.593582720307207]
We study the problem of individualization and its applications in medicine.
For example, the probability of benefiting from a treatment concerns an individual having a favorable outcome if treated and an unfavorable outcome if untreated.
We analyze and expand on existing research by applying bounds to the probability of necessity and sufficiency (PNS) along with graphical criteria and practical applications.
arXiv Detail & Related papers (2021-04-28T12:38:11Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Estimating Treatment Effects using Multiple Surrogates: The Role of the Surrogate Score and the Surrogate Index [4.154846138501937]
Estimating the long-term effects of treatments is of interest in many fields.
One approach is to analyze treatments effects on an intermediate outcome, often called a statistical surrogate.
arXiv Detail & Related papers (2016-03-30T19:45:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.