Estimating Treatment Effects using Multiple Surrogates: The Role of the Surrogate Score and the Surrogate Index
- URL: http://arxiv.org/abs/1603.09326v5
- Date: Thu, 22 Aug 2024 02:56:16 GMT
- Title: Estimating Treatment Effects using Multiple Surrogates: The Role of the Surrogate Score and the Surrogate Index
- Authors: Susan Athey, Raj Chetty, Guido Imbens, Hyunseung Kang,
- Abstract summary: Estimating the long-term effects of treatments is of interest in many fields.
One approach is to analyze treatments effects on an intermediate outcome, often called a statistical surrogate.
- Score: 4.154846138501937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Estimating the long-term effects of treatments is of interest in many fields. A common challenge in estimating such treatment effects is that long-term outcomes are unobserved in the time frame needed to make policy decisions. One approach to overcome this missing data problem is to analyze treatments effects on an intermediate outcome, often called a statistical surrogate, if it satisfies the condition that treatment and outcome are independent conditional on the statistical surrogate. The validity of the surrogacy condition is often controversial. Here we exploit that fact that in modern datasets, researchers often observe a large number, possibly hundreds or thousands, of intermediate outcomes, thought to lie on or close to the causal chain between the treatment and the long-term outcome of interest. Even if none of the individual proxies satisfies the statistical surrogacy criterion by itself, using multiple proxies can be useful in causal inference. We focus primarily on a setting with two samples, an experimental sample containing data about the treatment indicator and the surrogates and an observational sample containing information about the surrogates and the primary outcome. We state assumptions under which the average treatment effect be identified and estimated with a high-dimensional vector of proxies that collectively satisfy the surrogacy assumption, and derive the bias from violations of the surrogacy assumption, and show that even if the primary outcome is also observed in the experimental sample, there is still information to be gained from using surrogates.
Related papers
- Continuous Treatment Effects with Surrogate Outcomes [12.548638259932915]
We study the role of surrogates in estimating continuous treatment effects.
We propose a doubly robust method to efficiently incorporate surrogates in the analysis.
arXiv Detail & Related papers (2024-01-31T20:50:18Z) - The Blessings of Multiple Treatments and Outcomes in Treatment Effect
Estimation [53.81860494566915]
Existing studies leveraged proxy variables or multiple treatments to adjust for confounding bias.
In many real-world scenarios, there is greater interest in studying the effects on multiple outcomes.
We show that parallel studies of multiple outcomes involved in this setting can assist each other in causal identification.
arXiv Detail & Related papers (2023-09-29T14:33:48Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - Estimating long-term causal effects from short-term experiments and
long-term observational data with unobserved confounding [5.854757988966379]
We study the identification and estimation of long-term treatment effects when both experimental and observational data are available.
Our long-term causal effect estimator is obtained by combining regression residuals with short-term experimental outcomes.
arXiv Detail & Related papers (2023-02-21T12:22:47Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Combining Experimental and Observational Data for Identification of
Long-Term Causal Effects [13.32091725929965]
We consider the task of estimating the causal effect of a treatment variable on a long-term outcome variable using data from an observational domain and an experimental domain.
The observational data is assumed to be confounded and hence without further assumptions, this dataset alone cannot be used for causal inference either.
arXiv Detail & Related papers (2022-01-26T04:21:14Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - BITES: Balanced Individual Treatment Effect for Survival data [0.0]
Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine.
Time-to-event data is rarely used for treatment optimization.
We suggest an approach named BITES, which combines a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural network.
arXiv Detail & Related papers (2022-01-05T10:39:31Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Split-Treatment Analysis to Rank Heterogeneous Causal Effects for
Prospective Interventions [15.443178111068418]
We propose a split-treatment analysis that ranks the individuals most likely to be positively affected by a prospective intervention.
We show that the ranking of heterogeneous causal effect based on the proxy treatment is the same as the ranking based on the target treatment's effect.
arXiv Detail & Related papers (2020-11-11T16:17:29Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.