Demonstration of High-Fidelity Entangled Logical Qubits using Transmons
- URL: http://arxiv.org/abs/2503.14472v1
- Date: Tue, 18 Mar 2025 17:47:08 GMT
- Title: Demonstration of High-Fidelity Entangled Logical Qubits using Transmons
- Authors: Arian Vezvaee, Vinay Tripathi, Mario Morford-Oberst, Friederike Butt, Victor Kasatkin, Daniel A. Lidar,
- Abstract summary: We propose and implement a method that leverages dynamical decoupling (DD) to drastically suppress logical errors.<n>The resulting hybrid QEC-LDD strategy is in principle capable of handling arbitrary weight errors.<n>We present a method that allows for the detection of logical errors affecting encoded Bell states, which, in this case, arise primarily from crosstalk among physical qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error correction (QEC) codes are necessary to fault-tolerantly operate quantum computers. However, every such code is inherently limited by its inability to detect logical errors. Here, we propose and implement a method that leverages dynamical decoupling (DD) to drastically suppress logical errors. The key to achieving this is to use the logical operators of the QEC code as DD pulses, which we refer to as logical dynamical decoupling (LDD). The resulting hybrid QEC-LDD strategy is in principle capable of handling arbitrary weight errors. We test QEC-LDD using IBM transmon devices and the [[4,2,2]] code, demonstrating performance that significantly exceeds the capabilities of using either this code or DD in isolation. We present a method that allows for the detection of logical errors affecting logically encoded Bell states, which, in this case, arise primarily from crosstalk among physical qubits. Building on this, we experimentally demonstrate high-fidelity entangled logical qubits.
Related papers
- Quantum error detection in qubit-resonator star architecture [5.1474924705769185]
We encode two logical qubits in a star-topology superconducting QPU.<n>We measure logical state fidelities above 96 % for every cardinal logical state.<n>The presented QPU configuration can be used to enable qubit-count efficient QEC codes.
arXiv Detail & Related papers (2025-03-17T06:55:25Z) - Universal logical operations with a dynamical qubit in Floquet code [19.281236593958674]
We experimentally implement the Floquet-Bacon-Shor code on a superconducting quantum processor.<n>We encode a dynamical logical qubit within a $3times 3$ lattice of data qubits, alongside a conventional static logical qubit.<n>Our results highlight the potential of Floquet codes for scalable and resource-efficient FT quantum computation.
arXiv Detail & Related papers (2025-03-05T19:55:10Z) - Quantum LDPC codes for erasure-biased atomic quantum processors [0.0]
Quantum Low-Density Parity-Check (LDPC) codes have been recently shown to provide a path towards fault-tolerant quantum computing.<n>We demonstrate that when the dominant errors are erasures, quantum LDPC codes additionally provide high thresholds and even stronger logical error suppression.
arXiv Detail & Related papers (2025-02-27T15:23:40Z) - Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.
Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Scaling and logic in the color code on a superconducting quantum processor [109.61104855764401]
We present a demonstration of the color code on a superconducting processor, achieving logical error suppression and performing logical operations.
We inject magic states, a key resource for universal computation, achieving fidelities exceeding 99% with post-selection.
This work establishes the color code as a compelling research direction to realize fault-tolerant quantum computation on superconducting processors.
arXiv Detail & Related papers (2024-12-18T19:00:05Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Witnessing entanglement in trapped-ion quantum error correction under
realistic noise [41.94295877935867]
Quantum Error Correction (QEC) exploits redundancy by encoding logical information into multiple physical qubits.
We present a detailed microscopic error model to estimate the average gate infidelity of two-qubit light-shift gates used in trapped-ion platforms.
We then apply this realistic error model to quantify the multipartite entanglement generated by circuits that act as QEC building blocks.
arXiv Detail & Related papers (2022-12-14T20:00:36Z) - Partitioning qubits in hypergraph product codes to implement logical
gates [0.0]
Transversal gates are the simplest type of fault-tolerant logical gates.
We show that gates can be used as the basis for universal quantum computing on LDPC codes.
arXiv Detail & Related papers (2022-04-22T16:45:19Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Relaxation times do not capture logical qubit dynamics [50.04886706729045]
We show that spatial noise correlations can give rise to rich and counter-intuitive dynamical behavior of logical qubits.
This work will help to guide and benchmark experimental implementations of logical qubits.
arXiv Detail & Related papers (2020-12-14T19:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.