EnQode: Fast Amplitude Embedding for Quantum Machine Learning Using Classical Data
- URL: http://arxiv.org/abs/2503.14473v1
- Date: Tue, 18 Mar 2025 17:48:03 GMT
- Title: EnQode: Fast Amplitude Embedding for Quantum Machine Learning Using Classical Data
- Authors: Jason Han, Nicholas S. DiBrita, Younghyun Cho, Hengrui Luo, Tirthak Patel,
- Abstract summary: Amplitude embedding (AE) is essential in quantum machine learning (QML) for encoding classical data onto quantum circuits.<n>We introduce EnQode, a fast AE technique based on symbolic representation that addresses limitations by clustering dataset samples.<n>With over 90% fidelity in data mapping, EnQode enables robust, high-performance QML on noisy intermediate-scale quantum (NISQ) devices.
- Score: 4.329112531155235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Amplitude embedding (AE) is essential in quantum machine learning (QML) for encoding classical data onto quantum circuits. However, conventional AE methods suffer from deep, variable-length circuits that introduce high output error due to extensive gate usage and variable error rates across samples, resulting in noise-driven inconsistencies that degrade model accuracy. We introduce EnQode, a fast AE technique based on symbolic representation that addresses these limitations by clustering dataset samples and solving for cluster mean states through a low-depth, machine-specific ansatz. Optimized to reduce physical gates and SWAP operations, EnQode ensures all samples face consistent, low noise levels by standardizing circuit depth and composition. With over 90% fidelity in data mapping, EnQode enables robust, high-performance QML on noisy intermediate-scale quantum (NISQ) devices. Our open-source solution provides a scalable and efficient alternative for integrating classical data with quantum models.
Related papers
- An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.
We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.
We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Patch-Based End-to-End Quantum Learning Network for Reduction and Classification of Classical Data [0.22099217573031676]
In the noisy intermediate scale quantum (NISQ) era, the control over the qubits is limited due to errors caused by quantum decoherence, crosstalk, and imperfect calibration.
It is necessary to reduce the size of the large-scale classical data, such as images, when they are to be processed by quantum networks.
In this paper, a dynamic patch-based quantum domain data reduction network with a classical attention mechanism is proposed to avoid such data reductions.
arXiv Detail & Related papers (2024-09-23T16:58:02Z) - Learning Density Functionals from Noisy Quantum Data [0.0]
noisy intermediate-scale quantum (NISQ) devices are used to generate training data for machine learning (ML) models.
We show that a neural-network ML model can successfully generalize from small datasets subject to noise typical of NISQ algorithms.
Our findings suggest a promising pathway for leveraging NISQ devices in practical quantum simulations.
arXiv Detail & Related papers (2024-09-04T17:59:55Z) - Attention to Quantum Complexity [21.766643620345494]
We introduce the Quantum Attention Network (QuAN), a versatile classical AI framework.
QuAN treats measurement snapshots as tokens while respecting their permutation invariance.
We rigorously test QuAN across three distinct quantum simulation settings.
arXiv Detail & Related papers (2024-05-19T17:46:40Z) - Quantum Patch-Based Autoencoder for Anomaly Segmentation [44.99833362998488]
We introduce a patch-based quantum autoencoder (QPB-AE) for image anomaly segmentation.
QPB-AE reconstructs the quantum state of the embedded input patches, computing an anomaly map directly from measurement.
We evaluate its performance across multiple datasets and parameter configurations.
arXiv Detail & Related papers (2024-04-26T08:42:58Z) - Compressed-sensing Lindbladian quantum tomography with trapped ions [44.99833362998488]
Characterizing the dynamics of quantum systems is a central task for the development of quantum information processors.
We propose two different improvements of Lindbladian quantum tomography (LQT) that alleviate previous shortcomings.
arXiv Detail & Related papers (2024-03-12T09:58:37Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
We implement methods for the efficient preparation of quantum states representing encoded image data using variational, genetic and matrix product state based algorithms.
Results show that these methods can approximately prepare states to a level suitable for QML using circuits two orders of magnitude shallower than a standard state preparation implementation.
arXiv Detail & Related papers (2023-09-18T01:49:36Z) - Variational Denoising for Variational Quantum Eigensolver [0.28675177318965045]
The variational quantum eigensolver (VQE) is a hybrid algorithm that has the potential to provide a quantum advantage in practical chemistry problems.
VQE faces challenges in task-specific design and machine-specific architecture, particularly when running on noisy quantum devices.
We propose variational denoising, an unsupervised learning method that employs a parameterized quantum neural network to improve the solution of VQE.
arXiv Detail & Related papers (2023-04-02T14:56:15Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.