論文の概要: Multi-view Reconstruction via SfM-guided Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2503.14483v1
- Date: Tue, 18 Mar 2025 17:54:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:15:39.164555
- Title: Multi-view Reconstruction via SfM-guided Monocular Depth Estimation
- Title(参考訳): SfM誘導単眼深度推定による多視点再構成
- Authors: Haoyu Guo, He Zhu, Sida Peng, Haotong Lin, Yunzhi Yan, Tao Xie, Wenguan Wang, Xiaowei Zhou, Hujun Bao,
- Abstract要約: マルチビュー幾何再構成のための新しい手法を提案する。
深度推定プロセスに、より強力なマルチビューであるSfM情報を組み込む。
本手法は, 従来の単分子深度推定法と比較して, 深度推定の精度を著しく向上させる。
- 参考スコア(独自算出の注目度): 92.89227629434316
- License:
- Abstract: In this paper, we present a new method for multi-view geometric reconstruction. In recent years, large vision models have rapidly developed, performing excellently across various tasks and demonstrating remarkable generalization capabilities. Some works use large vision models for monocular depth estimation, which have been applied to facilitate multi-view reconstruction tasks in an indirect manner. Due to the ambiguity of the monocular depth estimation task, the estimated depth values are usually not accurate enough, limiting their utility in aiding multi-view reconstruction. We propose to incorporate SfM information, a strong multi-view prior, into the depth estimation process, thus enhancing the quality of depth prediction and enabling their direct application in multi-view geometric reconstruction. Experimental results on public real-world datasets show that our method significantly improves the quality of depth estimation compared to previous monocular depth estimation works. Additionally, we evaluate the reconstruction quality of our approach in various types of scenes including indoor, streetscape, and aerial views, surpassing state-of-the-art MVS methods. The code and supplementary materials are available at https://zju3dv.github.io/murre/ .
- Abstract(参考訳): 本稿では,多視点幾何再構成のための新しい手法を提案する。
近年、大規模な視覚モデルが急速に発展し、様々なタスクで優れた性能を発揮し、目覚ましい一般化能力を発揮している。
いくつかの研究では、一眼深度推定のための大きな視覚モデルを用いており、これは間接的に多視点再構成作業を容易にするために応用されている。
単分子深度推定タスクの曖昧さのため、推定された深度値は通常十分正確ではなく、多視点再構成における有用性を制限している。
そこで我々は,SfM情報を深度推定プロセスに組み込むことにより,深度予測の精度を高め,多視点幾何再構成における直接的適用を可能にすることを提案する。
実世界の公開データセットを用いた実験結果から,本手法は従来の単分子深度推定法と比較して,深度推定の精度を著しく向上することが示された。
さらに, 屋内, 街路景観, 空景色など様々な場面において, 最先端のMVS手法を超越して, アプローチの再現性を評価する。
コードと補足資料はhttps://zju3dv.github.io/murre/で公開されている。
関連論文リスト
- Align3R: Aligned Monocular Depth Estimation for Dynamic Videos [50.28715151619659]
動的ビデオの時間的一貫した深度マップを推定するために,Align3Rと呼ばれる新しいビデオ深度推定法を提案する。
我々のキーとなる考え方は、最近のDUSt3Rモデルを用いて、異なる時間ステップの単分子深度マップを整列させることである。
実験により、Align3Rは一貫したビデオ深度を推定し、カメラはベースライン法よりも優れた性能を持つ単眼ビデオのポーズを示す。
論文 参考訳(メタデータ) (2024-12-04T07:09:59Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
我々は、余分なデータやアノテーションを必要とせずに、幾何学保存深度を予測するためにモデルを訓練する学習フレームワークを提案する。
包括的な実験は、我々のフレームワークの優れた一般化能力を強調します。
我々の革新的な損失関数は、ドメイン固有のスケール・アンド・シフト係数を自律的に復元するモデルを可能にします。
論文 参考訳(メタデータ) (2023-09-18T12:36:39Z) - Incremental Dense Reconstruction from Monocular Video with Guided Sparse
Feature Volume Fusion [23.984073189849024]
本報告では, TSDF値のリアルタイムな特徴量に基づく高密度再構成手法を提案し, 新たな深部特徴量からTSDF値を推定する。
不確実性を認識したマルチビューステレオネットワークを利用して、スパース特徴量における物理表面の初期ボクセル位置を推定する。
提案手法は,多くの場合において,より細部でより完全な再構築が可能であることを示す。
論文 参考訳(メタデータ) (2023-05-24T09:06:01Z) - FusionDepth: Complement Self-Supervised Monocular Depth Estimation with
Cost Volume [9.912304015239313]
複数フレームの逐次制約により単眼深度を連続的に改善できる多眼深度推定フレームワークを提案する。
また,本手法は,単分子推定と多視点コストボリュームを組み合わせる際の解釈可能性も向上する。
論文 参考訳(メタデータ) (2023-05-10T10:38:38Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - Improving Monocular Visual Odometry Using Learned Depth [84.05081552443693]
単眼深度推定を応用して視力計測(VO)を改善する枠組みを提案する。
我々のフレームワークの中核は、多様なシーンに対して強力な一般化能力を持つ単眼深度推定モジュールである。
現在の学習型VO法と比較して,本手法は多様なシーンに対してより強力な一般化能力を示す。
論文 参考訳(メタデータ) (2022-04-04T06:26:46Z) - DDL-MVS: Depth Discontinuity Learning for MVS Networks [0.5735035463793007]
本稿では,MVS法における深度不連続学習を提案する。
当社のアイデアを検証し,既存の学習ベースのMVSパイプラインに戦略を組み込むことが可能であることを実証する。
論文 参考訳(メタデータ) (2022-03-02T20:25:31Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
一つのビデオから多視点深度を推定する新しい手法を提案する。
提案手法は,新しいEpipolar Spatio-Temporal Transformer(EST)を用いて時間的コヒーレントな深度推定を行う。
最近のMixture-of-Expertsモデルにインスパイアされた計算コストを削減するため、我々はコンパクトなハイブリッドネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-26T04:04:21Z) - Monocular Depth Estimation Based On Deep Learning: An Overview [16.2543991384566]
単一の画像から深度情報(眼深度推定)を推定することは不適切な問題である。
ディープラーニングは最近広く研究され、精度で有望なパフォーマンスを達成した。
深度推定の精度を向上させるために,様々な種類のネットワークフレームワーク,損失関数,トレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-03-14T12:35:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。