Ship Detection in Remote Sensing Imagery for Arbitrarily Oriented Object Detection
- URL: http://arxiv.org/abs/2503.14534v1
- Date: Mon, 17 Mar 2025 10:49:41 GMT
- Title: Ship Detection in Remote Sensing Imagery for Arbitrarily Oriented Object Detection
- Authors: Bibi Erum Ayesha, T. Satyanarayana Murthy, Palamakula Ramesh Babu, Ramu Kuchipudi,
- Abstract summary: This research paper presents an innovative ship detection system tailored for applications like maritime surveillance and ecological monitoring.<n>The study employs YOLOv8 and repurposed U-Net, two advanced deep learning models, to significantly enhance ship detection accuracy.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This research paper presents an innovative ship detection system tailored for applications like maritime surveillance and ecological monitoring. The study employs YOLOv8 and repurposed U-Net, two advanced deep learning models, to significantly enhance ship detection accuracy. Evaluation metrics include Mean Average Precision (mAP), processing speed, and overall accuracy. The research utilizes the "Airbus Ship Detection" dataset, featuring diverse remote sensing images, to assess the models' versatility in detecting ships with varying orientations and environmental contexts. Conventional ship detection faces challenges with arbitrary orientations, complex backgrounds, and obscured perspectives. Our approach incorporates YOLOv8 for real-time processing and U-Net for ship instance segmentation. Evaluation focuses on mAP, processing speed, and overall accuracy. The dataset is chosen for its diverse images, making it an ideal benchmark. Results demonstrate significant progress in ship detection. YOLOv8 achieves an 88% mAP, excelling in accurate and rapid ship detection. U Net, adapted for ship instance segmentation, attains an 89% mAP, improving boundary delineation and handling occlusions. This research enhances maritime surveillance, disaster response, and ecological monitoring, exemplifying the potential of deep learning models in ship detection.
Related papers
- TacoDepth: Towards Efficient Radar-Camera Depth Estimation with One-stage Fusion [54.46664104437454]
We propose TacoDepth, an efficient and accurate Radar-Camera depth estimation model with one-stage fusion.
Specifically, the graph-based Radar structure extractor and the pyramid-based Radar fusion module are designed.
Compared with the previous state-of-the-art approach, TacoDepth improves depth accuracy and processing speed by 12.8% and 91.8%.
arXiv Detail & Related papers (2025-04-16T05:25:04Z) - Image and AIS Data Fusion Technique for Maritime Computer Vision
Applications [1.482087972733629]
We develop a technique that fuses Automatic Identification System (AIS) data with vessels detected in images to create datasets.
Our approach associates detected ships to their corresponding AIS messages by estimating distance and azimuth.
This technique is useful for creating datasets for waterway traffic management, encounter detection, and surveillance.
arXiv Detail & Related papers (2023-12-07T20:54:49Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Deep Learning-Based Object Detection in Maritime Unmanned Aerial Vehicle
Imagery: Review and Experimental Comparisons [10.75221614844458]
We first briefly summarize four challenges for object detection on maritime UAVs, i.e. object feature diversity, device limitation, maritime environment variability, and dataset scarcity.
Next, we review the UAV aerial image/video datasets and propose a maritime UAV aerial dataset named MS2ship for ship detection.
arXiv Detail & Related papers (2023-11-14T07:20:38Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - MODS -- A USV-oriented object detection and obstacle segmentation
benchmark [12.356257470551348]
We introduce a new obstacle detection benchmark MODS, which considers two major perception tasks: maritime object detection and the more general maritime obstacle segmentation.
We present a new diverse maritime evaluation dataset containing approximately 81k stereo images synchronized with an on-board IMU, with over 60k objects annotated.
We propose a new obstacle segmentation performance evaluation protocol that reflects the detection accuracy in a way meaningful for practical USV navigation.
arXiv Detail & Related papers (2021-05-05T22:40:27Z) - Arbitrary-Oriented Ship Detection through Center-Head Point Extraction [11.45718985586972]
We propose a center-head point extraction based detector (named CHPDet) to achieve arbitrary-oriented ship detection in remote sensing images.
Our CHPDet formulates arbitrary-oriented ships as rotated boxes with head points which are used to determine the direction.
Our CHPDet achieves state-of-the-art performance and can well distinguish bow and stern.
arXiv Detail & Related papers (2021-01-27T03:58:52Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - A Novel CNN-based Method for Accurate Ship Detection in HR Optical
Remote Sensing Images via Rotated Bounding Box [10.689750889854269]
A novel CNN-based ship detection method is proposed, by overcoming some common deficiencies of current CNN-based methods in ship detection.
We are able to predict the orientation and other variables independently, and yet more effectively, with a novel dual-branch regression network.
Experimental results demonstrate the great superiority of the proposed method in ship detection.
arXiv Detail & Related papers (2020-04-15T14:48:46Z) - Real-Time target detection in maritime scenarios based on YOLOv3 model [65.35132992156942]
A novel ships dataset is proposed consisting of more than 56k images of marine vessels collected by means of web-scraping.
A YOLOv3 single-stage detector based on Keras API is built on top of this dataset.
arXiv Detail & Related papers (2020-02-10T15:25:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.