SOOD: Towards Semi-Supervised Oriented Object Detection
- URL: http://arxiv.org/abs/2304.04515v1
- Date: Mon, 10 Apr 2023 11:10:42 GMT
- Title: SOOD: Towards Semi-Supervised Oriented Object Detection
- Authors: Wei Hua, Dingkang Liang, Jingyu Li, Xiaolong Liu, Zhikang Zou,
Xiaoqing Ye, Xiang Bai
- Abstract summary: This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
- Score: 57.05141794402972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-Supervised Object Detection (SSOD), aiming to explore unlabeled data for
boosting object detectors, has become an active task in recent years. However,
existing SSOD approaches mainly focus on horizontal objects, leaving
multi-oriented objects that are common in aerial images unexplored. This paper
proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD,
built upon the mainstream pseudo-labeling framework. Towards oriented objects
in aerial scenes, we design two loss functions to provide better supervision.
Focusing on the orientations of objects, the first loss regularizes the
consistency between each pseudo-label-prediction pair (includes a prediction
and its corresponding pseudo label) with adaptive weights based on their
orientation gap. Focusing on the layout of an image, the second loss
regularizes the similarity and explicitly builds the many-to-many relation
between the sets of pseudo-labels and predictions. Such a global consistency
constraint can further boost semi-supervised learning. Our experiments show
that when trained with the two proposed losses, SOOD surpasses the
state-of-the-art SSOD methods under various settings on the DOTA-v1.5
benchmark. The code will be available at https://github.com/HamPerdredes/SOOD.
Related papers
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
We put forth a novel formulation of the aerial object detection problem, namely open-vocabulary aerial object detection (OVAD)
We propose CastDet, a CLIP-activated student-teacher detection framework that serves as the first OVAD detector specifically designed for the challenging aerial scenario.
Our framework integrates a robust localization teacher along with several box selection strategies to generate high-quality proposals for novel objects.
arXiv Detail & Related papers (2024-11-04T12:59:13Z) - Multi-clue Consistency Learning to Bridge Gaps Between General and Oriented Object in Semi-supervised Detection [26.486535389258965]
We experimentally find three gaps between general and oriented object detection in semi-supervised learning.
We propose a Multi-clue Consistency Learning (MCL) framework to bridge these gaps.
Our proposed MCL can achieve state-of-the-art performance in the semi-supervised oriented object detection task.
arXiv Detail & Related papers (2024-07-08T13:14:25Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T07:03:51Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing.
We propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC)
Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects.
arXiv Detail & Related papers (2024-03-20T08:15:18Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
This paper proposes a video object-centric model for multiple-object tracking pipelines.
It consists of an index-merge module that adapts the object-centric slots into detection outputs and an object memory module.
Benefited from object-centric learning, we only require sparse detection labels for object localization and feature binding.
arXiv Detail & Related papers (2023-09-01T03:34:12Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Open-Set Semi-Supervised Object Detection [43.464223594166654]
Recent developments for Semi-Supervised Object Detection (SSOD) have shown the promise of leveraging unlabeled data to improve an object detector.
We consider a more practical yet challenging problem, Open-Set Semi-Supervised Object Detection (OSSOD)
Our proposed framework effectively addresses the semantic expansion issue and shows consistent improvements on many OSSOD benchmarks.
arXiv Detail & Related papers (2022-08-29T17:04:30Z) - Occlusion-Robust Object Pose Estimation with Holistic Representation [42.27081423489484]
State-of-the-art (SOTA) object pose estimators take a two-stage approach.
We develop a novel occlude-and-blackout batch augmentation technique.
We also develop a multi-precision supervision architecture to encourage holistic pose representation learning.
arXiv Detail & Related papers (2021-10-22T08:00:26Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.