Synchronous vs Asynchronous Reinforcement Learning in a Real World Robot
- URL: http://arxiv.org/abs/2503.14554v1
- Date: Mon, 17 Mar 2025 22:24:39 GMT
- Title: Synchronous vs Asynchronous Reinforcement Learning in a Real World Robot
- Authors: Ali Parsaee, Fahim Shahriar, Chuxin He, Ruiqing Tan,
- Abstract summary: reinforcement learning (RL) agents learn by periodically conducting computationally expensive gradient updates.<n>In a rapidly changing environment, increased response time may be detrimental to the performance of the learning agent.<n>Asynchronous RL methods separate the computation of decision-making and gradient updates.<n>Our experiments show that the agents learn faster and attain significantly more returns using asynchronous RL.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent times, reinforcement learning (RL) with physical robots has attracted the attention of a wide range of researchers. However, state-of-the-art RL algorithms do not consider that physical environments do not wait for the RL agent to make decisions or updates. RL agents learn by periodically conducting computationally expensive gradient updates. When decision-making and gradient update tasks are carried out sequentially by the RL agent in a physical robot, it significantly increases the agent's response time. In a rapidly changing environment, this increased response time may be detrimental to the performance of the learning agent. Asynchronous RL methods, which separate the computation of decision-making and gradient updates, are a potential solution to this problem. However, only a few comparisons between asynchronous and synchronous RL have been made with physical robots. For this reason, the exact performance benefits of using asynchronous RL methods over synchronous RL methods are still unclear. In this study, we provide a performance comparison between asynchronous and synchronous RL using a physical robotic arm called Franka Emika Panda. Our experiments show that the agents learn faster and attain significantly more returns using asynchronous RL. Our experiments also demonstrate that the learning agent with a faster response time performs better than the agent with a slower response time, even if the agent with a slower response time performs a higher number of gradient updates.
Related papers
- Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models [11.624678008637623]
We propose separating generation and learning in RLHF.<n>Online DPO is found to be most robust to off-policy data.<n>Asynchronous training relies on an underexplored regime, online but off-policy RLHF.
arXiv Detail & Related papers (2024-10-23T19:59:50Z) - Overcoming Slow Decision Frequencies in Continuous Control: Model-Based Sequence Reinforcement Learning for Model-Free Control [1.104960878651584]
We introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to produce a sequence of actions for a given input state.<n>SRL addresses the challenges of learning action sequences by employing both a model and an actor-critic architecture operating at different temporal scales.<n>We evaluate SRL on a suite of continuous control tasks, demonstrating that it achieves performance comparable to state-of-the-art algorithms.
arXiv Detail & Related papers (2024-10-11T16:54:07Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and human preferences can lead to catastrophic outcomes in the real world.
Recent methods aim to mitigate misalignment by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - A Real-World Quadrupedal Locomotion Benchmark for Offline Reinforcement
Learning [27.00483962026472]
We benchmark 11 offline reinforcement learning algorithms in realistic quadrupedal locomotion dataset.
Experiments show that the best-performing ORL algorithms can achieve competitive performance compared with the model-free RL.
Our proposed benchmark will serve as a development platform for testing and evaluating the performance of ORL algorithms in real-world legged locomotion tasks.
arXiv Detail & Related papers (2023-09-13T13:18:29Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
Reinforcement learning (RL) is essentially different from supervised learning, and in practice, these learneds do not work well even in simple RL tasks.
Agent-gradient distribution is non-independent and identically distributed, leading to inefficient meta-training.
We show that, although only trained in toy tasks, our learned can generalize unseen complex tasks in Brax.
arXiv Detail & Related papers (2023-02-03T00:11:02Z) - Asynchronous Multi-Agent Reinforcement Learning for Efficient Real-Time
Multi-Robot Cooperative Exploration [16.681164058779146]
We consider the problem of cooperative exploration where multiple robots need to cooperatively explore an unknown region as fast as possible.
Existing MARL-based methods adopt action-making steps as the metric for exploration efficiency by assuming all the agents are acting in a fully synchronous manner.
We propose an asynchronous MARL solution, Asynchronous Coordination Explorer (ACE), to tackle this real-world challenge.
arXiv Detail & Related papers (2023-01-09T14:53:38Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
We train a network to map a dataset of past experiences to optimal behavior.
The retrieval process is trained to retrieve information from the dataset that may be useful in the current context.
We show that retrieval-augmented R2D2 learns significantly faster than the baseline R2D2 agent and achieves higher scores.
arXiv Detail & Related papers (2022-02-17T02:44:05Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z) - High-Throughput Synchronous Deep RL [132.43861715707905]
We propose High-Throughput Synchronous Deep Reinforcement Learning (HTS-RL)
We perform learning and rollouts concurrently, devise a system design which avoids stale policies'
We evaluate our approach on Atari games and the Google Research Football environment.
arXiv Detail & Related papers (2020-12-17T18:59:01Z) - Decoupling Representation Learning from Reinforcement Learning [89.82834016009461]
We introduce an unsupervised learning task called Augmented Temporal Contrast (ATC)
ATC trains a convolutional encoder to associate pairs of observations separated by a short time difference.
In online RL experiments, we show that training the encoder exclusively using ATC matches or outperforms end-to-end RL.
arXiv Detail & Related papers (2020-09-14T19:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.