Variational Autoencoded Multivariate Spatial Fay-Herriot Models
- URL: http://arxiv.org/abs/2503.14710v1
- Date: Tue, 18 Mar 2025 20:19:09 GMT
- Title: Variational Autoencoded Multivariate Spatial Fay-Herriot Models
- Authors: Zhenhua Wang, Paul A. Parker, Scott H. Holan,
- Abstract summary: Small area estimation models are essential for estimating population characteristics in regions with limited sample sizes.<n>The spatial Fay-Herriot model is one such approach that incorporates spatial dependence to improve estimation by borrowing strength from neighboring regions.<n>This paper proposes two methods that integrate the multivariate spatial Fay-Herriot model with spatial random effects, learned through variational autoencoders.
- Score: 2.411699454065038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Small area estimation models are essential for estimating population characteristics in regions with limited sample sizes, thereby supporting policy decisions, demographic studies, and resource allocation, among other use cases. The spatial Fay-Herriot model is one such approach that incorporates spatial dependence to improve estimation by borrowing strength from neighboring regions. However, this approach often requires substantial computational resources, limiting its scalability for high-dimensional datasets, especially when considering multiple (multivariate) responses. This paper proposes two methods that integrate the multivariate spatial Fay-Herriot model with spatial random effects, learned through variational autoencoders, to efficiently leverage spatial structure. Importantly, after training the variational autoencoder to represent spatial dependence for a given set of geographies, it may be used again in future modeling efforts, without the need for retraining. Additionally, the use of the variational autoencoder to represent spatial dependence results in extreme improvements in computational efficiency, even for massive datasets. We demonstrate the effectiveness of our approach using 5-year period estimates from the American Community Survey over all census tracts in California.
Related papers
- Encoded Spatial Attribute in Multi-Tier Federated Learning [1.5999407512883512]
This research presents an Encoded Spatial Multi-Tier Federated Learning approach.
In the client tier, encoding spatial information is introduced to better predict the target outcome.
Using evaluation metrics such as accuracy, our research reveals insights into the complexities of spatial granularity.
arXiv Detail & Related papers (2025-01-10T12:56:19Z) - TrajLearn: Trajectory Prediction Learning using Deep Generative Models [4.097342535693401]
Trajectory prediction aims to estimate an entity's future path using its current position and historical movement data.<n>To address these challenges, we introduce TrajLearn, a novel model for trajectory prediction.<n>TrajLearn predicts the next $k$ steps by integrating a customized beam search for exploring multiple potential paths.
arXiv Detail & Related papers (2024-12-30T23:38:52Z) - Exploiting Aggregation and Segregation of Representations for Domain Adaptive Human Pose Estimation [50.31351006532924]
Human pose estimation (HPE) has received increasing attention recently due to its wide application in motion analysis, virtual reality, healthcare, etc.<n>It suffers from the lack of labeled diverse real-world datasets due to the time- and labor-intensive annotation.<n>We introduce a novel framework that capitalizes on both representation aggregation and segregation for domain adaptive human pose estimation.
arXiv Detail & Related papers (2024-12-29T17:59:45Z) - A class of modular and flexible covariate-based covariance functions for nonstationary spatial modeling [0.0]
We present a class of covariance functions that relies on fixed, observable spatial information.
This model allows for separate structures for different sources of nonstationarity, such as marginal standard deviation, geometric anisotropy, and smoothness.
We analyze the capabilities of the presented model through simulation studies and an application to Swiss precipitation data.
arXiv Detail & Related papers (2024-10-22T05:53:25Z) - Deep autoregressive modeling for land use land cover [0.0]
Land use / land cover (LULC) modeling is a challenging task due to long-range dependencies between geographic features and distinct spatial patterns related to topography, ecology, and human development.
We identify a close connection between modeling of spatial patterns of land use and the task of image inpainting from computer vision and conduct a study of a modified PixelCNN architecture with approximately 19 million parameters for modeling LULC.
arXiv Detail & Related papers (2024-01-02T18:03:57Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Reconstructing Spatiotemporal Data with C-VAEs [49.1574468325115]
Conditional continuous representation of moving regions is commonly used.
In this work, we explore the capabilities of Conditional Varitemporal Autoencoder (C-VAE) models to generate realistic representations of regions' evolution.
arXiv Detail & Related papers (2023-07-12T15:34:10Z) - Improving Heterogeneous Model Reuse by Density Estimation [105.97036205113258]
This paper studies multiparty learning, aiming to learn a model using the private data of different participants.
Model reuse is a promising solution for multiparty learning, assuming that a local model has been trained for each party.
arXiv Detail & Related papers (2023-05-23T09:46:54Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Geo-Adaptive Deep Spatio-Temporal predictive modeling for human mobility [5.864710987890994]
Deep GA-vLS assumes data to be of fixed and regular shaped tensor shaped and face challenges of handling irregular data.
We present a novel geo-aware enabled learning operation based on a novel data structure for dependencies while maintaining the recurrent mechanism.
arXiv Detail & Related papers (2022-11-27T16:51:28Z) - Extending regionalization algorithms to explore spatial process
heterogeneity [5.158953116443068]
We propose two new algorithms for spatial regime delineation, two-stage K-Models and Regional-K-Models.
Results indicate that all three algorithms achieve superior or comparable performance to existing approaches.
arXiv Detail & Related papers (2022-06-19T15:09:23Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.