Encoded Spatial Attribute in Multi-Tier Federated Learning
- URL: http://arxiv.org/abs/2501.05934v1
- Date: Fri, 10 Jan 2025 12:56:19 GMT
- Title: Encoded Spatial Attribute in Multi-Tier Federated Learning
- Authors: Asfia Kawnine, Francis Palma, Seyed Alireza Rahimi Azghadi, Hung Cao,
- Abstract summary: This research presents an Encoded Spatial Multi-Tier Federated Learning approach.
In the client tier, encoding spatial information is introduced to better predict the target outcome.
Using evaluation metrics such as accuracy, our research reveals insights into the complexities of spatial granularity.
- Score: 1.5999407512883512
- License:
- Abstract: This research presents an Encoded Spatial Multi-Tier Federated Learning approach for a comprehensive evaluation of aggregated models for geospatial data. In the client tier, encoding spatial information is introduced to better predict the target outcome. The research aims to assess the performance of these models across diverse datasets and spatial attributes, highlighting variations in predictive accuracy. Using evaluation metrics such as accuracy, our research reveals insights into the complexities of spatial granularity and the challenges of capturing underlying patterns in the data. We extended the scope of federated learning (FL) by having multi-tier along with the functionality of encoding spatial attributes. Our N-tier FL approach used encoded spatial data to aggregate in different tiers. We obtained multiple models that predicted the different granularities of spatial data. Our findings underscore the need for further research to improve predictive accuracy and model generalization, with potential avenues including incorporating additional features, refining model architectures, and exploring alternative modeling approaches. Our experiments have several tiers representing different levels of spatial aspects. We obtained accuracy of 75.62% and 89.52% for the global model without having to train the model using the data constituted with the designated tier. The research also highlights the importance of the proposed approach in real-time applications.
Related papers
- Exploring the Efficacy of Meta-Learning: Unveiling Superior Data Diversity Utilization of MAML Over Pre-training [1.3980986259786223]
We show that dataset diversity can impact the performance of vision models.
Our study shows positive correlations between test set accuracy and data diversity.
These findings support our hypothesis and demonstrate a promising way for a deeper exploration of how formal data diversity influences model performance.
arXiv Detail & Related papers (2025-01-15T00:56:59Z) - TrajLearn: Trajectory Prediction Learning using Deep Generative Models [4.097342535693401]
Trajectory prediction aims to estimate an entity's future path using its current position and historical movement data.
To address these challenges, we introduce TrajLearn, a novel model for trajectory prediction.
TrajLearn predicts the next $k$ steps by integrating a customized beam search for exploring multiple potential paths.
arXiv Detail & Related papers (2024-12-30T23:38:52Z) - Multi-Scale and Multimodal Species Distribution Modeling [4.022195138381868]
Species distribution models (SDMs) aim to predict the distribution of species relating occurrence data with environmental variables.
Recent applications of deep learning to SDMs have enabled new avenues, specifically the inclusion of spatial data.
We develop a modular structure for SDMs that allows us to test the effect of scale in both single- and multi-scale settings.
Results on the GeoLifeCLEF 2023 benchmark indicate that considering multimodal data and learning multi-scale representations leads to more accurate models.
arXiv Detail & Related papers (2024-11-06T15:57:20Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Exploiting Representation Bias for Data Distillation in Abstractive Text
Summarization [25.467836837575742]
We show that deep models fail to capture the diversity of the input space.
We employ clustering techniques to learn the diversity of a model's sample space.
We devise a metric to filter out redundant data points to make the model more robust and less data hungry.
arXiv Detail & Related papers (2023-12-10T22:30:03Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Domain Adaptive Graph Neural Networks for Constraining Cosmological Parameters Across Multiple Data Sets [40.19690479537335]
We show that DA-GNN achieves higher accuracy and robustness on cross-dataset tasks.
This shows that DA-GNNs are a promising method for extracting domain-independent cosmological information.
arXiv Detail & Related papers (2023-11-02T20:40:21Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerse is a universal framework for dataset characterization.
infoVerse captures multidimensional characteristics of datasets by incorporating various model-driven meta-information.
In three real-world applications (data pruning, active learning, and data annotation), the samples chosen on infoVerse space consistently outperform strong baselines.
arXiv Detail & Related papers (2023-05-30T18:12:48Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.