論文の概要: Construction Site Scaffolding Completeness Detection Based on Mask R-CNN and Hough Transform
- arxiv url: http://arxiv.org/abs/2503.14716v1
- Date: Tue, 18 Mar 2025 20:27:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:25:35.968451
- Title: Construction Site Scaffolding Completeness Detection Based on Mask R-CNN and Hough Transform
- Title(参考訳): マスクR-CNNとハフ変換による完全性検出を行う建設現場
- Authors: Pei-Hsin Lin, Jacob J. Lin, Shang-Hsien Hsieh,
- Abstract要約: 本稿では,コンピュータビジョンを用いた足場とその横断ブラス検出のための深層学習に基づくアプローチを提案する。
注釈付きラベル付き足場画像データセットを使用して、畳み込みニューラルネットワーク(CNN)モデルをトレーニングする。
- 参考スコア(独自算出の注目度): 2.7309692684728617
- License:
- Abstract: Construction site scaffolding is essential for many building projects, and ensuring its safety is crucial to prevent accidents. The safety inspector must check the scaffolding's completeness and integrity, where most violations occur. The inspection process includes ensuring all the components are in the right place since workers often compromise safety for convenience and disassemble parts such as cross braces. This paper proposes a deep learning-based approach to detect the scaffolding and its cross braces using computer vision. A scaffold image dataset with annotated labels is used to train a convolutional neural network (CNN) model. With the proposed approach, we can automatically detect the completeness of cross braces from images taken at construction sites, without the need for manual inspection, saving a significant amount of time and labor costs. This non-invasive and efficient solution for detecting scaffolding completeness can help improve safety in construction sites.
- Abstract(参考訳): 建設現場の足場は多くの建築プロジェクトにとって不可欠であり、事故を防止するためには安全を確保することが不可欠である。
安全検査官は足場の完全性と完全性を確認しなければならない。
検査プロセスには、すべてのコンポーネントが正しい場所にあることを保証することが含まれる。
本稿では,コンピュータビジョンを用いた足場とその横断ブラス検出のための深層学習に基づくアプローチを提案する。
注釈付きラベル付き足場画像データセットを使用して、畳み込みニューラルネットワーク(CNN)モデルをトレーニングする。
提案手法により,手動検査を必要とせず,建設現場で撮影した画像からクロスブレースの完全性を自動的に検出し,かなりの時間と労力を節約できる。
この非侵襲的で効率的な足場完全性検出ソリューションは、建設現場の安全性を向上させるのに役立つ。
関連論文リスト
- Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
エッジコンピューティングは、時間に敏感なシナリオでディープラーニングベースのオブジェクト検出をデプロイするための重要なパラダイムとして登場した。
既存のエッジ検出手法では、軽量モデルによる検出精度のバランスの難しさ、適応性の制限、現実の検証の不十分といった課題に直面している。
本稿では,汎用的なプラグイン・アンド・プレイコンポーネントを用いてエッジ環境にオブジェクト検出モデルを適用するエッジ検出ツールボックス(ED-TOOLBOX)を提案する。
論文 参考訳(メタデータ) (2024-12-24T07:28:10Z) - AR-Facilitated Safety Inspection and Fall Hazard Detection on Construction Sites [17.943278018516416]
我々は,高層建設現場の安全検査を容易にするために,ヘッドマウント型拡張現実の可能性を探っている。
業界で特に懸念されているのは、人や物体の落下を防ぐために、高いレベルの建設現場で、周囲の安全画面を検査することである。
我々は,安全画面のどの部分が検査されたかを追跡することで,この検査作業を支援することを目的とする。
機械学習を用いて、近距離検査と修復を必要とする周辺スクリーンのギャップを自動的に検出し、レポートを自動化する。
論文 参考訳(メタデータ) (2024-12-02T08:38:43Z) - A Deep Learning Approach to Detect Complete Safety Equipment For Construction Workers Based On YOLOv7 [0.0]
本研究では,建設作業員が着用する安全装置を同定する深層学習技術を提案する。
推奨されるアプローチは、YOLO v7オブジェクト検出アルゴリズムを使用して、これらの安全アイテムを正確に検出する。
トレーニングされたモデルでは,安全機器認識のための精度,リコール,F1スコアが良好に動作した。
論文 参考訳(メタデータ) (2024-06-11T20:38:41Z) - Towards Improving Workers' Safety and Progress Monitoring of
Construction Sites Through Construction Site Understanding [0.0]
我々は,グローバルな特徴親和性関連に基づくチャネル関係を改善するために,軽量なOPモジュールを提案する。
OP-Netは、あらゆるディープニューラルネットワークにプラグインできる一般的なディープニューラルネットワークモジュールである。
SODAを用いたベンチマークテストでは、OP-Netが新しい最先端性能を精度良く達成できることを示した。
論文 参考訳(メタデータ) (2022-10-27T20:33:46Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
本稿では,ロバスト検出器 (RobustDet) を提案する。
本モデルは, クリーン画像の検出能力を維持しながら, 傾きを効果的に解き, 検出堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2022-07-13T13:59:59Z) - ObjectSeeker: Certifiably Robust Object Detection against Patch Hiding
Attacks via Patch-agnostic Masking [95.6347501381882]
物体探知機は物理的世界のパッチ隠蔽攻撃に弱いことが判明した。
我々は,堅牢なオブジェクト検出器を構築するためのフレームワークとしてObjectSeekerを提案する。
論文 参考訳(メタデータ) (2022-02-03T19:34:25Z) - Fast and Robust Structural Damage Analysis of Civil Infrastructure Using
UAV Imagery [0.0]
自動構造検査損傷解析のためのエンドツーエンド手法を提案する。
自動オブジェクト検出とセグメンテーションを使用して、欠陥、ブリッジユーティリティ、エレメントを正確にローカライズする。
本手法は,UAV画像の高速かつロバストな損傷解析を可能にするだけでなく,手動で取得した画像の解析にも有効である。
論文 参考訳(メタデータ) (2021-10-10T14:24:26Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
物体検出器の分布外一般化を改善するための補助的自己監視タスクの有効性を検討する。
最大エントロピーの原理に触発されて,新しい自己監督タスクであるインスタンスレベル時間サイクル混乱(cycconf)を導入する。
それぞれのオブジェクトに対して、タスクは、ビデオ内の隣接するフレームで最も異なるオブジェクトの提案を見つけ、自己スーパービジョンのために自分自身にサイクルバックすることです。
論文 参考訳(メタデータ) (2021-04-16T21:35:08Z) - Pixel-level Corrosion Detection on Metal Constructions by Fusion of Deep
Learning Semantic and Contour Segmentation [13.133263651395865]
金属構造物の腐食検出は、迅速で安全で効果的な検査のための土木工学における大きな課題である。
既存の画像解析手法では、構造解析とプレファブリケーションの両方に不十分な欠陥領域に境界ボックスを配置する傾向がある。
本研究では,3つのセマンティックセグメンテーション指向ディープラーニングモデル(FCN,U-Net,Mask R-CNN)を腐食検出に適用し,精度と時間面で優れた性能を示す。
論文 参考訳(メタデータ) (2020-08-12T09:54:17Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
本稿では,セグメント化された平面マスクを画像に検出されたエッジと整列するための後処理アルゴリズムを提案する。
これにより、立方体形状の物体に制限を加えながら、最先端のアプローチの精度を高めることができます。
論文 参考訳(メタデータ) (2020-03-28T18:51:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。