Revisiting Image Fusion for Multi-Illuminant White-Balance Correction
- URL: http://arxiv.org/abs/2503.14774v1
- Date: Tue, 18 Mar 2025 23:01:22 GMT
- Title: Revisiting Image Fusion for Multi-Illuminant White-Balance Correction
- Authors: David Serrano-Lozano, Aditya Arora, Luis Herranz, Konstantinos G. Derpanis, Michael S. Brown, Javier Vazquez-Corral,
- Abstract summary: White balance correction in scenes with multiple illuminants remains a persistent challenge in computer vision.<n>Recent methods explored fusion-based approaches, where a neural network linearly blends multiple sRGB versions of an input image.<n>We propose an efficient transformer-based model that captures spatial dependencies across sRGB WB presets.<n>Our method achieves up to 100% improvement over existing techniques on our new multi-illuminant image fusion dataset.
- Score: 41.71551797731725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: White balance (WB) correction in scenes with multiple illuminants remains a persistent challenge in computer vision. Recent methods explored fusion-based approaches, where a neural network linearly blends multiple sRGB versions of an input image, each processed with predefined WB presets. However, we demonstrate that these methods are suboptimal for common multi-illuminant scenarios. Additionally, existing fusion-based methods rely on sRGB WB datasets lacking dedicated multi-illuminant images, limiting both training and evaluation. To address these challenges, we introduce two key contributions. First, we propose an efficient transformer-based model that effectively captures spatial dependencies across sRGB WB presets, substantially improving upon linear fusion techniques. Second, we introduce a large-scale multi-illuminant dataset comprising over 16,000 sRGB images rendered with five different WB settings, along with WB-corrected images. Our method achieves up to 100\% improvement over existing techniques on our new multi-illuminant image fusion dataset.
Related papers
- Exposure Bracketing Is All You Need For A High-Quality Image [50.822601495422916]
Multi-exposure images are complementary in denoising, deblurring, high dynamic range imaging, and super-resolution.<n>We propose to utilize exposure bracketing photography to get a high-quality image by combining these tasks in this work.<n>In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed.
arXiv Detail & Related papers (2024-01-01T14:14:35Z) - A Non-Uniform Low-Light Image Enhancement Method with Multi-Scale
Attention Transformer and Luminance Consistency Loss [11.585269110131659]
Low-light image enhancement aims to improve the perception of images collected in dim environments.
Existing methods cannot adaptively extract the differentiated luminance information, which will easily cause over-exposure and under-exposure.
We propose a multi-scale attention Transformer named MSATr, which sufficiently extracts local and global features for light balance to improve the visual quality.
arXiv Detail & Related papers (2023-12-27T10:07:11Z) - Diving into Darkness: A Dual-Modulated Framework for High-Fidelity
Super-Resolution in Ultra-Dark Environments [51.58771256128329]
This paper proposes a specialized dual-modulated learning framework that attempts to deeply dissect the nature of the low-light super-resolution task.
We develop Illuminance-Semantic Dual Modulation (ISDM) components to enhance feature-level preservation of illumination and color details.
Comprehensive experiments showcases the applicability and generalizability of our approach to diverse and challenging ultra-low-light conditions.
arXiv Detail & Related papers (2023-09-11T06:55:32Z) - Spectral Graphormer: Spectral Graph-based Transformer for Egocentric
Two-Hand Reconstruction using Multi-View Color Images [33.70056950818641]
We propose a novel transformer-based framework that reconstructs two high fidelity hands from multi-view RGB images.
We show that our framework is able to produce realistic two-hand reconstructions and demonstrate the generalisation of synthetic-trained models to real data.
arXiv Detail & Related papers (2023-08-21T20:07:02Z) - MIMT: Multi-Illuminant Color Constancy via Multi-Task Local Surface and
Light Color Learning [42.72878256074646]
We introduce a multi-task learning method to discount multiple light colors in a single input image.
To have better cues of the local surface/light colors under multiple light color conditions, we design a novel multi-task learning framework.
Our model achieves 47.1% improvement compared to a state-of-the-art multi-illuminant color constancy method on a multi-illuminant dataset.
arXiv Detail & Related papers (2022-11-16T09:00:20Z) - Cross-Camera Deep Colorization [10.254243409261898]
We propose an end-to-end convolutional neural network to align and fuse images from a color-plus-mono dual-camera system.
Our method consistently achieves substantial improvements, i.e., around 10dB PSNR gain.
arXiv Detail & Related papers (2022-08-26T11:02:14Z) - MAFNet: A Multi-Attention Fusion Network for RGB-T Crowd Counting [40.4816930622052]
We propose a two-stream RGB-T crowd counting network called Multi-Attention Fusion Network (MAFNet)
In the encoder part, a Multi-Attention Fusion (MAF) module is embedded into different stages of the two modality-specific branches for cross-modal fusion.
Extensive experiments on two popular datasets show that the proposed MAFNet is effective for RGB-T crowd counting.
arXiv Detail & Related papers (2022-08-14T02:42:09Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
We use Self-Supervised Representation Learning to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation.
Our pretext tasks require only a few and un RGB-D datasets to perform pre-training, which make the network capture rich semantic contexts.
For the inherent problem of cross-modal fusion in RGB-D SOD, we propose a multi-path fusion module.
arXiv Detail & Related papers (2021-01-29T09:16:06Z) - Single Image Brightening via Multi-Scale Exposure Fusion with Hybrid
Learning [48.890709236564945]
A small ISO and a small exposure time are usually used to capture an image in the back or low light conditions.
In this paper, a single image brightening algorithm is introduced to brighten such an image.
The proposed algorithm includes a unique hybrid learning framework to generate two virtual images with large exposure times.
arXiv Detail & Related papers (2020-07-04T08:23:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.