SAIGFormer: A Spatially-Adaptive Illumination-Guided Network for Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2507.15520v1
- Date: Mon, 21 Jul 2025 11:38:56 GMT
- Title: SAIGFormer: A Spatially-Adaptive Illumination-Guided Network for Low-Light Image Enhancement
- Authors: Hanting Li, Fei Zhou, Xin Sun, Yang Hua, Jungong Han, Liang-Jie Zhang,
- Abstract summary: Recent Transformer-based low-light enhancement methods have made promising progress in recovering global illumination.<n>Recent Transformer-based low-light enhancement methods have made promising progress in recovering global illumination.<n>We present a Spatially-Adaptive Illumination-Guided Transformer framework that enables accurate illumination restoration.
- Score: 58.79901582809091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Transformer-based low-light enhancement methods have made promising progress in recovering global illumination. However, they still struggle with non-uniform lighting scenarios, such as backlit and shadow, appearing as over-exposure or inadequate brightness restoration. To address this challenge, we present a Spatially-Adaptive Illumination-Guided Transformer (SAIGFormer) framework that enables accurate illumination restoration. Specifically, we propose a dynamic integral image representation to model the spatially-varying illumination, and further construct a novel Spatially-Adaptive Integral Illumination Estimator ($\text{SAI}^2\text{E}$). Moreover, we introduce an Illumination-Guided Multi-head Self-Attention (IG-MSA) mechanism, which leverages the illumination to calibrate the lightness-relevant features toward visual-pleased illumination enhancement. Extensive experiments on five standard low-light datasets and a cross-domain benchmark (LOL-Blur) demonstrate that our SAIGFormer significantly outperforms state-of-the-art methods in both quantitative and qualitative metrics. In particular, our method achieves superior performance in non-uniform illumination enhancement while exhibiting strong generalization capabilities across multiple datasets. Code is available at https://github.com/LHTcode/SAIGFormer.git.
Related papers
- Towards Scale-Aware Low-Light Enhancement via Structure-Guided Transformer Design [13.587511215001115]
Current Low-light Image Enhancement (LLIE) techniques rely on either direct Low-Light (LL) to Normal-Light (NL) mappings or guidance from semantic features or illumination maps.<n>We present SG-LLIE, a new multi-scale CNN-Transformer hybrid framework guided by structure priors.<n>Our solution ranks second in the NTIRE 2025 Low-Light Enhancement Challenge.
arXiv Detail & Related papers (2025-04-18T20:57:16Z) - ALEN: A Dual-Approach for Uniform and Non-Uniform Low-Light Image Enhancement [10.957431540794836]
Inadequate illumination can lead to significant information loss and poor image quality, impacting various applications such as surveillance.<n>Current enhancement techniques often use specific datasets to enhance low-light images, but still present challenges when adapting to diverse real-world conditions.<n>The Adaptive Light Enhancement Network (ALEN) is introduced, whose main approach is the use of a classification mechanism to determine whether local or global illumination enhancement is required.
arXiv Detail & Related papers (2024-07-29T05:19:23Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.<n>Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.<n>We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - Zero-Reference Low-Light Enhancement via Physical Quadruple Priors [58.77377454210244]
We propose a new zero-reference low-light enhancement framework trainable solely with normal light images.
This framework is able to restore our illumination-invariant prior back to images, automatically achieving low-light enhancement.
arXiv Detail & Related papers (2024-03-19T17:36:28Z) - A Non-Uniform Low-Light Image Enhancement Method with Multi-Scale
Attention Transformer and Luminance Consistency Loss [11.585269110131659]
Low-light image enhancement aims to improve the perception of images collected in dim environments.
Existing methods cannot adaptively extract the differentiated luminance information, which will easily cause over-exposure and under-exposure.
We propose a multi-scale attention Transformer named MSATr, which sufficiently extracts local and global features for light balance to improve the visual quality.
arXiv Detail & Related papers (2023-12-27T10:07:11Z) - Diving into Darkness: A Dual-Modulated Framework for High-Fidelity
Super-Resolution in Ultra-Dark Environments [51.58771256128329]
This paper proposes a specialized dual-modulated learning framework that attempts to deeply dissect the nature of the low-light super-resolution task.
We develop Illuminance-Semantic Dual Modulation (ISDM) components to enhance feature-level preservation of illumination and color details.
Comprehensive experiments showcases the applicability and generalizability of our approach to diverse and challenging ultra-low-light conditions.
arXiv Detail & Related papers (2023-09-11T06:55:32Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
Low-light environments usually lead to less informative large-scale dark areas.
We propose to integrate the effectiveness of gamma correction with the strong modelling capacities of deep networks.
Because exponential operation introduces high computational complexity, we propose to use Taylor Series to approximate gamma correction.
arXiv Detail & Related papers (2023-08-16T08:46:51Z) - Self-Aligned Concave Curve: Illumination Enhancement for Unsupervised
Adaptation [36.050270650417325]
We propose a learnable illumination enhancement model for high-level vision.
Inspired by real camera response functions, we assume that the illumination enhancement function should be a concave curve.
Our model architecture and training designs mutually benefit each other, forming a powerful unsupervised normal-to-low light adaptation framework.
arXiv Detail & Related papers (2022-10-07T19:32:55Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.