論文の概要: RAT: Boosting Misclassification Detection Ability without Extra Data
- arxiv url: http://arxiv.org/abs/2503.14783v1
- Date: Tue, 18 Mar 2025 23:18:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:26:08.311154
- Title: RAT: Boosting Misclassification Detection Ability without Extra Data
- Title(参考訳): RAT:余分なデータ無しで誤分類検出能力を高める
- Authors: Ge Yan, Tsui-Wei Weng,
- Abstract要約: 本研究では,逆方向摂動レンズを用いた画像分類モデルの誤分類入力の検出について検討する。
本稿では、信頼度としてロバスト半径を用い、2つの効率的な推定アルゴリズムRR-BSとRR-Fastを誤分類検出に使用することを提案する。
実験では,AURCの最大29.3%,FPR@95TPRの最大21.62%の削減が可能であった。
- 参考スコア(独自算出の注目度): 17.800393583230044
- License:
- Abstract: As deep neural networks(DNN) become increasingly prevalent, particularly in high-stakes areas such as autonomous driving and healthcare, the ability to detect incorrect predictions of models and intervene accordingly becomes crucial for safety. In this work, we investigate the detection of misclassified inputs for image classification models from the lens of adversarial perturbation: we propose to use robust radius (a.k.a. input-space margin) as a confidence metric and design two efficient estimation algorithms, RR-BS and RR-Fast, for misclassification detection. Furthermore, we design a training method called Radius Aware Training (RAT) to boost models' ability to identify mistakes. Extensive experiments show our method could achieve up to 29.3% reduction on AURC and 21.62% reduction in FPR@95TPR, compared with previous methods.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)が普及するにつれて、特に自律運転やヘルスケアといった高い領域において、モデルと介入の誤った予測を検出する能力は、安全にとって不可欠である。
本研究では,逆方向摂動レンズによる画像分類モデルに対する誤分類入力の検出について検討し,信頼度としてロバスト半径(すなわち入力空間マージン)を用い,誤分類検出のためにRR-BSとRR-Fastの2つの効率的な推定アルゴリズムを設計することを提案する。
さらに,Radius Aware Training (RAT) と呼ばれるトレーニング手法を設計し,誤りを識別するモデルの能力を高める。
AURCでは29.3%,FPR@95TPRでは21.62%の削減が可能であった。
関連論文リスト
- Efficient Apple Maturity and Damage Assessment: A Lightweight Detection
Model with GAN and Attention Mechanism [7.742643088073472]
本研究では,軽量畳み込みニューラルネットワーク(CNN)とGAN(Generative Adversarial Network)に基づく手法を提案する。
リンゴ熟度グレーディング検出では, それぞれ95.6%, 93.8%, 95.0%, 56.5の精度, リコール, 精度, FPSが得られた。
リンゴの損傷レベル検出では、提案モデルはそれぞれ95.3%、93.7%、94.5%の精度、リコール、mAPに達する。
論文 参考訳(メタデータ) (2023-10-13T18:22:30Z) - Rule-Based Error Detection and Correction to Operationalize Movement Trajectory Classification [1.192247515575942]
動作軌跡プラットフォームに組み込むためのモデルの誤り訂正と検出を行う,ニューロシンボリックなルールベースのフレームワークを提供する。
最大0.984の誤差を予測するためのF1スコア、分布外精度の大幅な向上(ゼロショット精度のSOTAよりも8.51%向上)、SOTAモデルよりも精度の向上を示す。
論文 参考訳(メタデータ) (2023-08-28T01:57:38Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
我々は、識別器モデルが入力の特定の特徴に対してより敏感であることを示唆する新しいパーセプトロンバイアスの仮定を導入し、過度な問題を引き起こした。
DMの拡散分解過程 (DDP) が非対称の新たな形態として機能し, 入力を高め, 過信問題を緩和するのに適していることを示す。
CIFAR10, CIFAR100, ImageNetによる実験により, 提案手法がSOTA手法より優れていることが示された。
論文 参考訳(メタデータ) (2022-11-21T08:45:08Z) - A New Knowledge Distillation Network for Incremental Few-Shot Surface
Defect Detection [20.712532953953808]
本稿では,DKAN(Dual Knowledge Align Network)と呼ばれる新しい知識蒸留ネットワークを提案する。
提案したDKAN法は,事前学習型ファインタニング伝達学習パラダイムを踏襲し,ファインタニングのための知識蒸留フレームワークを設計した。
Few-shot NEU-DETデータセットをインクリメンタルに実験した結果、DKANは様々なシーンで他の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-09-01T15:08:44Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
敵攻撃は、様々なアルゴリズムやフレームワークでディープニューラルネットワーク(DNN)を妨害する。
本稿では,GDMP ( Guided diffusion model for purification) と呼ばれる新しい精製法を提案する。
様々なデータセットにわたる包括的実験において,提案したGDMPは,敵対的攻撃によって引き起こされた摂動を浅い範囲に減少させることを示した。
論文 参考訳(メタデータ) (2022-05-30T10:11:15Z) - UNBUS: Uncertainty-aware Deep Botnet Detection System in Presence of
Perturbed Samples [1.2691047660244335]
ボットネット検出には極めて低い偽陽性率(FPR)が必要であるが、現代のディープラーニングでは一般的に達成できない。
本稿では,98%以上の精度のボットネット分類のためのLSTMに基づく2つの分類アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-04-18T21:49:14Z) - Universal adversarial perturbation for remote sensing images [41.54094422831997]
本稿では,エンコーダ・デコーダネットワークとアテンション機構を組み合わせた新しい手法を提案する。
実験の結果、UAPはRSIを誤分類し、提案手法の攻撃成功率(ASR)は97.35%であることがわかった。
論文 参考訳(メタデータ) (2022-02-22T06:43:28Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
我々は,$textitslow start, fast decay$ learning rate schedulingストラテジーに基づく,単純かつ非常に効果的な敵の微調整手法を提案する。
実験の結果,提案手法はCIFAR-10, CIFAR-100, ImageNetデータセットの最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-25T20:50:15Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。