論文の概要: MMDT: Decoding the Trustworthiness and Safety of Multimodal Foundation Models
- arxiv url: http://arxiv.org/abs/2503.14827v1
- Date: Wed, 19 Mar 2025 01:59:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:26:00.588425
- Title: MMDT: Decoding the Trustworthiness and Safety of Multimodal Foundation Models
- Title(参考訳): MMDT:マルチモーダルファンデーションモデルの信頼性と安全性をデコードする
- Authors: Chejian Xu, Jiawei Zhang, Zhaorun Chen, Chulin Xie, Mintong Kang, Yujin Potter, Zhun Wang, Zhuowen Yuan, Alexander Xiong, Zidi Xiong, Chenhui Zhang, Lingzhi Yuan, Yi Zeng, Peiyang Xu, Chengquan Guo, Andy Zhou, Jeffrey Ziwei Tan, Xuandong Zhao, Francesco Pinto, Zhen Xiang, Yu Gai, Zinan Lin, Dan Hendrycks, Bo Li, Dawn Song,
- Abstract要約: MMFM(Multimodal foundation model)は、自律運転、ヘルスケア、バーチャルアシスタントなど、様々なアプリケーションにおいて重要な役割を果たす。
既存のマルチモーダルモデルのベンチマークは、主にこれらのモデルの有用性を評価するか、公平性やプライバシといった限られた視点にのみフォーカスする。
MMFMの安全性と信頼性を総合的に評価するために,最初の統合プラットフォームMMDT(Multimodal DecodingTrust)を提案する。
- 参考スコア(独自算出の注目度): 101.70140132374307
- License:
- Abstract: Multimodal foundation models (MMFMs) play a crucial role in various applications, including autonomous driving, healthcare, and virtual assistants. However, several studies have revealed vulnerabilities in these models, such as generating unsafe content by text-to-image models. Existing benchmarks on multimodal models either predominantly assess the helpfulness of these models, or only focus on limited perspectives such as fairness and privacy. In this paper, we present the first unified platform, MMDT (Multimodal DecodingTrust), designed to provide a comprehensive safety and trustworthiness evaluation for MMFMs. Our platform assesses models from multiple perspectives, including safety, hallucination, fairness/bias, privacy, adversarial robustness, and out-of-distribution (OOD) generalization. We have designed various evaluation scenarios and red teaming algorithms under different tasks for each perspective to generate challenging data, forming a high-quality benchmark. We evaluate a range of multimodal models using MMDT, and our findings reveal a series of vulnerabilities and areas for improvement across these perspectives. This work introduces the first comprehensive and unique safety and trustworthiness evaluation platform for MMFMs, paving the way for developing safer and more reliable MMFMs and systems. Our platform and benchmark are available at https://mmdecodingtrust.github.io/.
- Abstract(参考訳): MMFM(Multimodal foundation model)は、自律運転、ヘルスケア、バーチャルアシスタントなど、様々なアプリケーションにおいて重要な役割を果たす。
しかし、テキスト・ツー・イメージ・モデルによる安全でないコンテンツの生成など、これらのモデルの脆弱性がいくつか報告されている。
既存のマルチモーダルモデルのベンチマークは、主にこれらのモデルの有用性を評価するか、公平性やプライバシといった限られた視点にのみフォーカスする。
本稿では,MMFMの総合的安全性と信頼性評価を目的とした,最初の統一プラットフォームMMDT(Multimodal DecodingTrust)を提案する。
我々のプラットフォームは、安全、幻覚、公正/バイアス、プライバシー、敵対的堅牢性、アウト・オブ・ディストリビューション(OOD)一般化など、さまざまな観点からモデルを評価する。
各視点で様々な評価シナリオとレッド・チーム・アルゴリズムを設計し、挑戦的なデータを生成し、高品質なベンチマークを作成しました。
MMDTを用いたマルチモーダルモデルの評価を行い,これらの観点から様々な脆弱性と改善領域を明らかにした。
本研究は,安全で信頼性の高いMMFMとシステムを開発するための,MMFMの総合的かつユニークな信頼性評価プラットフォームを初めて導入する。
私たちのプラットフォームとベンチマークはhttps://mmdecodingtrust.github.io/で公開されています。
関連論文リスト
- Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models [25.606641582511106]
モデル性能を向上させるために,マルチイメージ入力と安全チェーン・オブ・ソート(CoT)ラベルを微粒な推論ロジックとして統合する新しいデータセットを提案する。
実験の結果,MISを用いた微調整InternVL2.5-8Bは,マルチイメージタスクに挑戦する上で,強力なオープンソースモデルとAPIベースモデルの両方を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2025-01-30T17:59:45Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - VHELM: A Holistic Evaluation of Vision Language Models [75.88987277686914]
視覚言語モデル(VHELM)の全体的評価について述べる。
VHELMは、視覚的知覚、知識、推論、バイアス、公平性、多言語性、堅牢性、毒性、安全性の9つの側面の1つ以上をカバーするために、さまざまなデータセットを集約する。
私たちのフレームワークは軽量で自動で、評価の実行が安価で高速に行えるように設計されています。
論文 参考訳(メタデータ) (2024-10-09T17:46:34Z) - MultiTrust: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models [51.19622266249408]
MultiTrustはMLLMの信頼性に関する最初の総合的で統一されたベンチマークである。
我々のベンチマークでは、マルチモーダルリスクとクロスモーダルインパクトの両方に対処する厳格な評価戦略を採用している。
21の近代MLLMによる大規模な実験は、これまで調査されなかった信頼性の問題とリスクを明らかにしている。
論文 参考訳(メタデータ) (2024-06-11T08:38:13Z) - MMCert: Provable Defense against Adversarial Attacks to Multi-modal Models [34.802736332993994]
我々は,マルチモーダルモデルに対する敵攻撃に対する最初の認証された防御であるMCCertを提案する。
我々は,マルチモーダル道路セグメンテーションタスクとマルチモーダル道路セグメンテーションタスクと,マルチモーダル感情認識タスクの2つのベンチマークデータセットを用いて,MCCertを評価した。
論文 参考訳(メタデータ) (2024-03-28T01:05:06Z) - COMMIT: Certifying Robustness of Multi-Sensor Fusion Systems against
Semantic Attacks [24.37030085306459]
本稿では,マルチセンサ融合システムのセマンティックアタックに対する堅牢性を証明した最初のロバストネス認証フレームワークCOMMITを提案する。
特に,マルチモーダルデータを用いたランダム化平滑化を利用した実用的な異方性雑音機構を提案する。
MSFモデルの認証は、MSFモデルの利点を検証するシングルモーダルモデルよりも少なくとも48.39%高いことが示されている。
論文 参考訳(メタデータ) (2024-03-04T18:57:11Z) - MMBench: Is Your Multi-modal Model an All-around Player? [114.45702807380415]
視覚言語モデルのマルチモーダル能力を評価するためのベンチマークであるMMBenchを提案する。
MMBenchは、よく設計された品質制御スキームで慎重にキュレートされている。
MMBenchは英語版と中国語版の両方で複数の質問を取り入れている。
論文 参考訳(メタデータ) (2023-07-12T16:23:09Z) - FM-ViT: Flexible Modal Vision Transformers for Face Anti-Spoofing [88.6654909354382]
本稿では,顔のアンチ・スプーフィングのためのフレキシブル・モーダル・ビジョン・トランス (FM-ViT) と呼ばれる,純粋なトランスフォーマーベースのフレームワークを提案する。
FM-ViTは、利用可能なマルチモーダルデータの助けを借りて、任意の単一モーダル(すなわちRGB)攻撃シナリオを柔軟にターゲットすることができる。
実験により、FM-ViTに基づいてトレーニングされた単一モデルは、異なるモーダルサンプルを柔軟に評価できるだけでなく、既存のシングルモーダルフレームワークよりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-05-05T04:28:48Z) - MM-SHAP: A Performance-agnostic Metric for Measuring Multimodal
Contributions in Vision and Language Models & Tasks [20.902155496422417]
視覚と言語モデルは、各モダリティにおける関連情報に焦点をあてるのではなく、個々のモダリティにおける不正な指標を利用する。
MM-SHAPは,シェープリー値に基づく性能非依存のマルチモーダリティスコアである。
論文 参考訳(メタデータ) (2022-12-15T21:41:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。