Unlocking the Capabilities of Vision-Language Models for Generalizable and Explainable Deepfake Detection
- URL: http://arxiv.org/abs/2503.14853v1
- Date: Wed, 19 Mar 2025 03:20:03 GMT
- Title: Unlocking the Capabilities of Vision-Language Models for Generalizable and Explainable Deepfake Detection
- Authors: Peipeng Yu, Jianwei Fei, Hui Gao, Xuan Feng, Zhihua Xia, Chip Hong Chang,
- Abstract summary: Current vision-language models (VLMs) have demonstrated remarkable capabilities in understanding multimodal data, but their potential remains underexplored for deepfake detection.<n>We present a novel paradigm that unlocksVLMs' potential capabilities through three components.
- Score: 18.125287697902813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current vision-language models (VLMs) have demonstrated remarkable capabilities in understanding multimodal data, but their potential remains underexplored for deepfake detection due to the misaligned of their knowledge and forensics patterns. To this end, we present a novel paradigm that unlocks VLMs' potential capabilities through three components: (1) A knowledge-guided forgery adaptation module that aligns VLM's semantic space with forensic features through contrastive learning with external manipulation knowledge; (2) A multi-modal prompt tuning framework that jointly optimizes visual-textual embeddings for both localization and explainability; (3) An iterative refinement strategy enabling multi-turn dialog for evidence-based reasoning. Our framework includes a VLM-based Knowledge-guided Forgery Detector (KFD), a VLM image encoder, and a Large Language Model (LLM). The VLM image encoder extracts visual prompt embeddings from images, while the LLM receives visual and question prompt embeddings for inference. The KFD is used to calculate correlations between image features and pristine/deepfake class embeddings, enabling forgery classification and localization. The outputs from these components are used to construct forgery prompt embeddings. Finally, we feed these prompt embeddings into the LLM to generate textual detection responses to assist judgment. Extensive experiments on multiple benchmarks, including FF++, CDF2, DFD, DFDCP, and DFDC, demonstrate that our scheme surpasses state-of-the-art methods in generalization performance, while also supporting multi-turn dialogue capabilities.
Related papers
- QID: Efficient Query-Informed ViTs in Data-Scarce Regimes for OCR-free Visual Document Understanding [53.69841526266547]
Fine-tuning a pre-trained Vision-Language Model with new datasets often falls short in optimizing the vision encoder.
We introduce QID, a novel, streamlined, architecture-preserving approach that integrates query embeddings into the vision encoder.
arXiv Detail & Related papers (2025-04-03T18:47:16Z) - REF-VLM: Triplet-Based Referring Paradigm for Unified Visual Decoding [36.376220619032225]
REF-VLM is an end-to-end framework for unified training of various visual decoding tasks.<n>We construct a large-scale multi-task dataset containing over 100 million multimodal dialogue samples.<n> REF-VLM outperforms other MLLMs across a variety of standard benchmarks.
arXiv Detail & Related papers (2025-03-10T14:59:14Z) - Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
We investigate the contributions of visual features from different encoder layers using 18 benchmarks spanning 6 task categories.
Our findings reveal that multilayer features provide complementary strengths with varying task dependencies, and uniform fusion leads to suboptimal performance.
We propose the instruction-guided vision aggregator, a module that dynamically integrates multi-layer visual features based on textual instructions.
arXiv Detail & Related papers (2024-12-26T05:41:31Z) - Quo Vadis, Anomaly Detection? LLMs and VLMs in the Spotlight [2.290956583394892]
Video anomaly detection (VAD) has witnessed significant advancements through the integration of large language models (LLMs) and vision-language models (VLMs)
This paper presents an in-depth review of cutting-edge LLM-/VLM-based methods in 2024.
arXiv Detail & Related papers (2024-12-24T09:05:37Z) - ForgeryGPT: Multimodal Large Language Model For Explainable Image Forgery Detection and Localization [49.12958154544838]
ForgeryGPT is a novel framework that advances the Image Forgery Detection and localization task.<n>It captures high-order correlations of forged images from diverse linguistic feature spaces.<n>It enables explainable generation and interactive dialogue through a newly customized Large Language Model (LLM) architecture.
arXiv Detail & Related papers (2024-10-14T07:56:51Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
We propose a contrastive learning framework, termed Document Object COntrastive learning (DoCo)
DoCo leverages an auxiliary multimodal encoder to obtain the features of document objects and align them to the visual features generated by the vision encoder of Large Visual-Language Models (LVLMs)
We demonstrate that the proposed DoCo serves as a plug-and-play pre-training method, which can be employed in the pre-training of various LVLMs without inducing any increase in computational complexity during the inference process.
arXiv Detail & Related papers (2024-02-29T10:17:27Z) - LION : Empowering Multimodal Large Language Model with Dual-Level Visual
Knowledge [58.82222646803248]
Multimodal Large Language Models (MLLMs) have endowed LLMs with the ability to perceive and understand multi-modal signals.
Most of the existing MLLMs mainly adopt vision encoders pretrained on coarsely aligned image-text pairs, leading to insufficient extraction and reasoning of visual knowledge.
We propose a dual-Level vIsual knedgeOwl eNhanced Multimodal Large Language Model (LION), which empowers the MLLM by injecting visual knowledge in two levels.
arXiv Detail & Related papers (2023-11-20T15:56:44Z) - Fine-tuning Multimodal LLMs to Follow Zero-shot Demonstrative Instructions [126.3136109870403]
We introduce a generic and lightweight Visual Prompt Generator Complete module (VPG-C)
VPG-C infers and completes the missing details essential for comprehending demonstrative instructions.
We build DEMON, a comprehensive benchmark for demonstrative instruction understanding.
arXiv Detail & Related papers (2023-08-08T09:32:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.