Low-Complexity Patch-based No-Reference Point Cloud Quality Metric exploiting Weighted Structure and Texture Features
- URL: http://arxiv.org/abs/2503.15001v1
- Date: Wed, 19 Mar 2025 08:52:04 GMT
- Title: Low-Complexity Patch-based No-Reference Point Cloud Quality Metric exploiting Weighted Structure and Texture Features
- Authors: Michael Neri, Federica Battisti,
- Abstract summary: PST-PCQA is a no-reference point cloud quality metric based on a low-complexity, learning-based framework.<n>It evaluates point cloud quality by analyzing individual patches, integrating local and global features to predict the Mean Opinion Score.
- Score: 5.409704301731714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: During the compression, transmission, and rendering of point clouds, various artifacts are introduced, affecting the quality perceived by the end user. However, evaluating the impact of these distortions on the overall quality is a challenging task. This study introduces PST-PCQA, a no-reference point cloud quality metric based on a low-complexity, learning-based framework. It evaluates point cloud quality by analyzing individual patches, integrating local and global features to predict the Mean Opinion Score. In summary, the process involves extracting features from patches, combining them, and using correlation weights to predict the overall quality. This approach allows us to assess point cloud quality without relying on a reference point cloud, making it particularly useful in scenarios where reference data is unavailable. Experimental tests on three state-of-the-art datasets show good prediction capabilities of PST-PCQA, through the analysis of different feature pooling strategies and its ability to generalize across different datasets. The ablation study confirms the benefits of evaluating quality on a patch-by-patch basis. Additionally, PST-PCQA's light-weight structure, with a small number of parameters to learn, makes it well-suited for real-time applications and devices with limited computational capacity. For reproducibility purposes, we made code, model, and pretrained weights available at https://github.com/michaelneri/PST-PCQA.
Related papers
- RBFIM: Perceptual Quality Assessment for Compressed Point Clouds Using Radial Basis Function Interpolation [58.04300937361664]
One of the main challenges in point cloud compression (PCC) is how to evaluate the perceived distortion so that the RB can be optimized for perceptual quality.<n>We propose a novel assessment method, utilizing radial basis function (RBF) to convert discrete point features into a continuous feature function for the distorted point cloud.
arXiv Detail & Related papers (2025-03-18T11:25:55Z) - No-Reference Point Cloud Quality Assessment via Graph Convolutional Network [89.12589881881082]
Three-dimensional (3D) point cloud, as an emerging visual media format, is increasingly favored by consumers.
Point clouds inevitably suffer from quality degradation and information loss through multimedia communication systems.
We propose a novel no-reference PCQA method by using a graph convolutional network (GCN) to characterize the mutual dependencies of multi-view 2D projected image contents.
arXiv Detail & Related papers (2024-11-12T11:39:05Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment [60.2709006613171]
We propose simple baselines for projection-based point cloud quality assessment (PCQA)
We use multi-projections obtained via a common cube-like projection process from the point clouds for both full-reference (FR) and no-reference (NR) PCQA tasks.
Taking part in the ICIP 2023 PCVQA Challenge, we succeeded in achieving the top spot in four out of the five competition tracks.
arXiv Detail & Related papers (2023-10-26T04:42:57Z) - No-Reference Point Cloud Quality Assessment via Weighted Patch Quality
Prediction [19.128878108831287]
We propose a no-reference point cloud quality assessment (NR-PCQA) method with local area correlation analysis capability, denoted as COPP-Net.
More specifically, we split a point cloud into patches, generate texture and structure features for each patch, and fuse them into patch features to predict patch quality.
Experimental results show that our method outperforms the state-of-the-art benchmark NR-PCQA methods.
arXiv Detail & Related papers (2023-05-13T03:20:33Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
We propose PointPatchMix, which mixes point clouds at the patch level and generates content-based targets for mixed point clouds.
Our approach preserves local features at the patch level, while the patch scoring module assigns targets based on the content-based significance score from a pre-trained teacher model.
With Point-MAE as our baseline, our model surpasses previous methods by a significant margin, achieving 86.3% accuracy on ScanObjectNN and 94.1% accuracy on ModelNet40.
arXiv Detail & Related papers (2023-03-12T14:49:42Z) - Reduced-Reference Quality Assessment of Point Clouds via
Content-Oriented Saliency Projection [17.983188216548005]
Many dense 3D point clouds have been exploited to represent visual objects instead of traditional images or videos.
We propose a novel and efficient Reduced-Reference quality metric for point clouds.
arXiv Detail & Related papers (2023-01-18T18:00:29Z) - Progressive Knowledge Transfer Based on Human Visual Perception
Mechanism for Perceptual Quality Assessment of Point Clouds [21.50682830021656]
A progressive knowledge transfer based on human visual perception mechanism for perceptual quality assessment of point clouds (PKT-PCQA) is proposed.
Experiments on three large and independent point cloud assessment datasets show that the proposed no reference PKT-PCQA network achieves better of equivalent performance.
arXiv Detail & Related papers (2022-11-30T00:27:58Z) - Point Cloud Quality Assessment using 3D Saliency Maps [37.290843791053256]
We propose an effective full-reference PCQA metric which makes the first attempt to utilize the saliency information to facilitate quality prediction.
Specifically, we first propose a projection-based point cloud saliency map generation method, in which depth information is introduced to better reflect the geometric characteristics of point clouds.
Finally, a saliency-based pooling strategy is proposed to generate the final quality score.
arXiv Detail & Related papers (2022-09-30T13:59:09Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
In rate-distortion optimization, the encoder settings are determined by maximizing a reconstruction quality measure subject to a constraint on the bit rate.
We propose a linear perceptual quality model whose variables are the V-PCC geometry and color quantization parameters.
Subjective quality tests with 400 compressed 3D point clouds show that the proposed model correlates well with the mean opinion score.
We show that for the same target bit rate, ratedistortion optimization based on the proposed model offers higher perceptual quality than rate-distortion optimization based on exhaustive search with a point-to-point objective quality metric.
arXiv Detail & Related papers (2020-11-25T12:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.