論文の概要: Forensics-Bench: A Comprehensive Forgery Detection Benchmark Suite for Large Vision Language Models
- arxiv url: http://arxiv.org/abs/2503.15024v1
- Date: Wed, 19 Mar 2025 09:21:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:23:30.055815
- Title: Forensics-Bench: A Comprehensive Forgery Detection Benchmark Suite for Large Vision Language Models
- Title(参考訳): Forensics-Bench: 大規模視覚言語モデルのための総合的偽検出ベンチマークスイート
- Authors: Jin Wang, Chenghui Lv, Xian Li, Shichao Dong, Huadong Li, kelu Yao, Chao Li, Wenqi Shao, Ping Luo,
- Abstract要約: Forensics-Benchは、新しい偽検出評価ベンチマークスイートである。
63,292件の厳密にキュレートされたマルチチョイスの視覚的質問からなり、112件の独特な偽造検出をカバーしている。
GPT-4o, Gemini 1.5 Pro, Claude 3.5 Sonnetの22のオープンソースLVLMと3つのプロプライエタリモデルについて徹底的な評価を行った。
- 参考スコア(独自算出の注目度): 53.55128042938329
- License:
- Abstract: Recently, the rapid development of AIGC has significantly boosted the diversities of fake media spread in the Internet, posing unprecedented threats to social security, politics, law, and etc. To detect the ever-increasingly diverse malicious fake media in the new era of AIGC, recent studies have proposed to exploit Large Vision Language Models (LVLMs) to design robust forgery detectors due to their impressive performance on a wide range of multimodal tasks. However, it still lacks a comprehensive benchmark designed to comprehensively assess LVLMs' discerning capabilities on forgery media. To fill this gap, we present Forensics-Bench, a new forgery detection evaluation benchmark suite to assess LVLMs across massive forgery detection tasks, requiring comprehensive recognition, location and reasoning capabilities on diverse forgeries. Forensics-Bench comprises 63,292 meticulously curated multi-choice visual questions, covering 112 unique forgery detection types from 5 perspectives: forgery semantics, forgery modalities, forgery tasks, forgery types and forgery models. We conduct thorough evaluations on 22 open-sourced LVLMs and 3 proprietary models GPT-4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet, highlighting the significant challenges of comprehensive forgery detection posed by Forensics-Bench. We anticipate that Forensics-Bench will motivate the community to advance the frontier of LVLMs, striving for all-around forgery detectors in the era of AIGC. The deliverables will be updated at https://Forensics-Bench.github.io/.
- Abstract(参考訳): 近年、AIGCの急速な発展は、インターネットに拡散する偽メディアの多様化を著しく加速させ、社会保障、政治、法律等に対する前例のない脅威を招いている。
AIGCの新たな時代において、ますます多様な悪意ある偽メディアを検出するために、近年の研究は、広範囲のマルチモーダルタスクにおける印象的なパフォーマンスのために、堅牢な偽造検知を設計するために、LVLM(Large Vision Language Models)を活用することを提案した。
しかし、偽造メディア上でのLVLMの識別能力を総合的に評価するために設計された包括的なベンチマークはいまだに欠けている。
このギャップを埋めるために、Forensics-Benchという新しいフォージェリ検出評価ベンチマークスイートを提案し、様々なフォージェリに対して総合的な認識、位置、推論機能を必要とする大規模なフォージェリ検出タスクにわたるLVLMを評価する。
Forensics-Benchは63,292の厳密にキュレートされた複数選択の視覚的質問で構成されており、フォージェリーセマンティクス、フォージェリーモダリティ、フォージェリータスク、フォージェリータイプ、フォージェリーモデルという5つの視点から112の独自のフォージェリー検出タイプをカバーしている。
我々は,22のオープンソースLVLMと3つのプロプライエタリモデル GPT-4o, Gemini 1.5 Pro, Claude 3.5 Sonnet を徹底的に評価し,Forensics-Bench による包括的偽造検出の課題を強調した。
我々は、AIGC時代における全周フォージェリ検出器の努力により、コミュニティがLVLMのフロンティアを前進させるモチベーションを期待する。
製品はhttps://Forensics-Bench.github.io/で更新される。
関連論文リスト
- A Hitchhikers Guide to Fine-Grained Face Forgery Detection Using Common Sense Reasoning [9.786907179872815]
視覚と言語の可能性は、いまだに偽造検出に過小評価されている。
顔偽造検出を視覚質問応答(VQA)タスクに変換する方法論が必要である。
このギャップに対処するために,従来の二項決定パラダイムから分岐する多段階的アプローチを提案する。
論文 参考訳(メタデータ) (2024-10-01T08:16:40Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - DetToolChain: A New Prompting Paradigm to Unleash Detection Ability of MLLM [81.75988648572347]
DetToolChainはマルチモーダル大言語モデル(MLLM)のゼロショットオブジェクト検出能力を解き放つ新しいパラダイムである。
提案手法は,高精度検出にヒントを得た検出プロンプトツールキットと,これらのプロンプトを実装するための新しいChain-of-Thoughtから構成される。
DetToolChainを用いたGPT-4Vは,オープン語彙検出のための新しいクラスセットにおいて,最先端のオブジェクト検出器を+21.5%AP50で改善することを示す。
論文 参考訳(メタデータ) (2024-03-19T06:54:33Z) - SHIELD : An Evaluation Benchmark for Face Spoofing and Forgery Detection
with Multimodal Large Language Models [63.946809247201905]
フェーススプーフィングと偽造検出におけるMLLMの能力を評価するための新しいベンチマーク、ShielDを導入する。
我々は、これらの2つの顔セキュリティタスクにおいて、マルチモーダル顔データを評価するために、真/偽/複数選択の質問を設計する。
その結果,MLLMは顔セキュリティ領域において大きな可能性を秘めていることがわかった。
論文 参考訳(メタデータ) (2024-02-06T17:31:36Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - Large Language Model-Powered Smart Contract Vulnerability Detection: New
Perspectives [8.524720028421447]
本稿では, GPT-4 のような大規模言語モデル (LLM) を利用する機会, 課題, 潜在的な解決策を体系的に分析する。
高いランダム性でより多くの答えを生成することは、正しい答えを生み出す可能性を大幅に押し上げるが、必然的に偽陽性の数が増加する。
本稿では,GPTLens と呼ばれる,従来の一段階検出を2つの相乗的段階に分割し,生成と識別を行う逆方向のフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-02T12:37:23Z) - Detect Any Deepfakes: Segment Anything Meets Face Forgery Detection and
Localization [30.317619885984005]
本稿では,視覚的セグメンテーション基盤モデル,すなわちセグメンテーションモデル(SAM)をフォージェリ検出とローカライゼーションの対面に導入する。
SAMに基づいて,Multiscale Adapterを用いたDADFフレームワークを提案する。
提案するフレームワークは、エンドツーエンドのフォージェリーローカライゼーションと検出最適化をシームレスに統合する。
論文 参考訳(メタデータ) (2023-06-29T16:25:04Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
本稿では,強力な大規模言語モデル(LLM)に対するMGT検出のための最初のベンチマークフレームワークを提案する。
一般に単語が多ければ多いほど性能が向上し,ほとんどの検出手法はトレーニングサンプルをはるかに少なくして同様の性能が得られることを示す。
本研究は, テキスト属性タスクにおいて, モデルに基づく検出手法が依然として有効であることを示す。
論文 参考訳(メタデータ) (2023-03-26T21:12:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。