SPADE: Structured Prompting Augmentation for Dialogue Enhancement in Machine-Generated Text Detection
- URL: http://arxiv.org/abs/2503.15044v2
- Date: Tue, 01 Jul 2025 01:18:26 GMT
- Title: SPADE: Structured Prompting Augmentation for Dialogue Enhancement in Machine-Generated Text Detection
- Authors: Haoyi Li, Angela Yifei Yuan, Soyeon Caren Han, Christopher Leckie,
- Abstract summary: We propose SPADE, a structured framework for detecting synthetic dialogues using prompt-based positive and negative samples.<n>Our proposed methods yield 14 new dialogue datasets, which we benchmark against eight MGT detection models.
- Score: 15.626772502710867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing capability of large language models (LLMs) to generate synthetic content has heightened concerns about their misuse, driving the development of Machine-Generated Text (MGT) detection models. However, these detectors face significant challenges due to the lack of high-quality synthetic datasets for training. To address this issue, we propose SPADE, a structured framework for detecting synthetic dialogues using prompt-based positive and negative samples. Our proposed methods yield 14 new dialogue datasets, which we benchmark against eight MGT detection models. The results demonstrate improved generalization performance when utilizing a mixed dataset produced by proposed augmentation frameworks, offering a practical approach to enhancing LLM application security. Considering that real-world agents lack knowledge of future opponent utterances, we simulate online dialogue detection and examine the relationship between chat history length and detection accuracy. Our open-source datasets, code and prompts can be downloaded from https://github.com/AngieYYF/SPADE-customer-service-dialogue.
Related papers
- Speculative End-Turn Detector for Efficient Speech Chatbot Assistant [11.136112399898481]
We introduce the ETD dataset, the first public dataset for end-turn detection.
We also propose SpeculativeETD, a novel collaborative inference framework that balances efficiency and accuracy to improve real-time ETD in resource-constrained environments.
Experiments demonstrate that the proposed SpeculativeETD significantly improves ETD accuracy while keeping the required computations low.
arXiv Detail & Related papers (2025-03-30T13:34:23Z) - REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation [51.97224538045096]
We introduce REALTALK, a 21-day corpus of authentic messaging app dialogues.<n>We compare EI attributes and persona consistency to understand the challenges posed by real-world dialogues.<n>Our findings reveal that models struggle to simulate a user solely from dialogue history, while fine-tuning on specific user chats improves persona emulation.
arXiv Detail & Related papers (2025-02-18T20:29:01Z) - Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
Machine-generated content poses challenges such as academic plagiarism and the spread of misinformation.<n>We introduce novel methodologies and datasets to overcome these challenges.<n>We propose MhBART, an encoder-decoder model designed to emulate human writing style.<n>We also propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features.
arXiv Detail & Related papers (2024-12-17T08:47:41Z) - CoPrUS: Consistency Preserving Utterance Synthesis towards more realistic benchmark dialogues [0.27309692684728604]
We investigate the creation of synthetic communication errors in an automatic pipeline.<n>We focus on three types of miscommunications that could happen in real-world dialogues but are underrepresented in the benchmark dataset.<n>Our two-step approach uses a state-of-the-art Large Language Model (LLM) to first create the error and secondly the repairing utterance.
arXiv Detail & Related papers (2024-12-10T13:51:55Z) - DiaSynth: Synthetic Dialogue Generation Framework for Low Resource Dialogue Applications [18.378069426713]
Existing research is constrained by general or niche datasets that lack sufficient scale for training dialogue systems.
We introduce Dia Synth - a synthetic dialogue generation framework capable of generating high-quality, contextually rich dialogues.
We perform our experiments by generating synthetic data using different LLMs and few-shot examples from DialogSum and SAMSum.
arXiv Detail & Related papers (2024-09-25T07:03:31Z) - Simulating Task-Oriented Dialogues with State Transition Graphs and Large Language Models [16.94819621353007]
SynTOD is a new synthetic data generation approach for developing end-to-end Task-Oriented Dialogue (TOD) systems.
It generates diverse, structured conversations through random walks and response simulation using large language models.
In our experiments, using graph-guided response simulations leads to significant improvements in intent classification, slot filling and response relevance.
arXiv Detail & Related papers (2024-04-23T06:23:34Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
We propose a novel approach for enhancing contextual recognition within ASR systems via semantic lattice processing.
Our solution consists of using Hidden Markov Models and Gaussian Mixture Models (HMM-GMM) along with Deep Neural Networks (DNN) models for better accuracy.
We demonstrate the effectiveness of our proposed framework on the LibriSpeech dataset with empirical analyses.
arXiv Detail & Related papers (2023-10-14T23:16:05Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
Current knowledge-grounded dialogue systems often fail to align the generated responses with human-preferred qualities.
We propose Polished & Informed Candidate Scoring (PICK), a generation re-scoring framework.
We demonstrate the effectiveness of PICK in generating responses that are more faithful while keeping them relevant to the dialogue history.
arXiv Detail & Related papers (2023-09-19T08:27:09Z) - SSP: Self-Supervised Post-training for Conversational Search [63.28684982954115]
We propose fullmodel (model) which is a new post-training paradigm with three self-supervised tasks to efficiently initialize the conversational search model.
To verify the effectiveness of our proposed method, we apply the conversational encoder post-trained by model on the conversational search task using two benchmark datasets: CAsT-19 and CAsT-20.
arXiv Detail & Related papers (2023-07-02T13:36:36Z) - RECAP: Retrieval-Enhanced Context-Aware Prefix Encoder for Personalized
Dialogue Response Generation [30.245143345565758]
We propose a new retrieval-enhanced approach for personalized response generation.
We design a hierarchical transformer retriever trained on dialogue domain data to perform personalized retrieval and a context-aware prefix encoder that fuses the retrieved information to the decoder more effectively.
We quantitatively evaluate our model's performance under a suite of human and automatic metrics and find it to be superior compared to state-of-the-art baselines on English Reddit conversations.
arXiv Detail & Related papers (2023-06-12T16:10:21Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
We propose a novel paradigm that uses a textual interface to align external knowledge and eliminate redundant processes.
We demonstrate our paradigm in practice through MultiWOZ-Remake, including an interactive textual interface built for the MultiWOZ database.
arXiv Detail & Related papers (2023-05-23T05:48:21Z) - Multi-grained Hypergraph Interest Modeling for Conversational
Recommendation [75.65483522949857]
We propose a novel multi-grained hypergraph interest modeling approach to capture user interest beneath intricate historical data.
In our approach, we first employ the hypergraph structure to model users' historical dialogue sessions and form a session-based hypergraph, which captures coarse-grained, session-level relations.
We further conduct multi-grained hypergraph convolution on the two kinds of hypergraphs, and utilize the enhanced representations to develop interest-aware CRS.
arXiv Detail & Related papers (2023-05-04T13:13:44Z) - DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for
Dialog Response Generation [80.45816053153722]
DialogVED introduces continuous latent variables into the enhanced encoder-decoder pre-training framework to increase the relevance and diversity of responses.
We conduct experiments on PersonaChat, DailyDialog, and DSTC7-AVSD benchmarks for response generation.
arXiv Detail & Related papers (2022-04-27T16:18:15Z) - Quick Starting Dialog Systems with Paraphrase Generation [0.0]
We propose a method to reduce the cost and effort of creating new conversational agents by artificially generating more data from existing examples.
Our proposed approach can kick-start a dialog system with little human effort, and brings its performance to a level satisfactory enough for allowing actual interactions with real end-users.
arXiv Detail & Related papers (2022-04-06T02:35:59Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.