ARC: Anchored Representation Clouds for High-Resolution INR Classification
- URL: http://arxiv.org/abs/2503.15156v1
- Date: Wed, 19 Mar 2025 12:24:29 GMT
- Title: ARC: Anchored Representation Clouds for High-Resolution INR Classification
- Authors: Joost Luijmes, Alexander Gielisse, Roman Knyazhitskiy, Jan van Gemert,
- Abstract summary: Implicit neural representations encode signals in neural network weights as memory-efficient representation.<n>Current INR image classification methods are sensitive to image-space transformations.<n>We propose ARC: Anchored Representation Clouds, a novel INR architecture that explicitly anchors latent vectors locally in image-space.
- Score: 49.11170948406405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit neural representations (INRs) encode signals in neural network weights as a memory-efficient representation, decoupling sampling resolution from the associated resource costs. Current INR image classification methods are demonstrated on low-resolution data and are sensitive to image-space transformations. We attribute these issues to the global, fully-connected MLP neural network architecture encoding of current INRs, which lack mechanisms for local representation: MLPs are sensitive to absolute image location and struggle with high-frequency details. We propose ARC: Anchored Representation Clouds, a novel INR architecture that explicitly anchors latent vectors locally in image-space. By introducing spatial structure to the latent vectors, ARC captures local image data which in our testing leads to state-of-the-art implicit image classification of both low- and high-resolution images and increased robustness against image-space translation. Code can be found at https://github.com/JLuij/anchored_representation_clouds.
Related papers
- HIIF: Hierarchical Encoding based Implicit Image Function for Continuous Super-resolution [16.652558917081954]
We propose textbfHIIF for continuous image super-resolution.<n>Our approach embeds a multi-head linear attention mechanism within the implicit attention network by taking additional non-local information into account.<n>Our experiments show that, when integrated with different backbone encoders, HIIF outperforms the state-of-the-art continuous image super-resolution methods by up to 0.17dB in PSNR.
arXiv Detail & Related papers (2024-12-04T22:35:20Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
Generalizable implicit neural representation (INR) enables a single continuous function to represent multiple data instances.
We propose a novel framework for generalizable INR that combines a transformer encoder with a locality-aware INR decoder.
Our framework significantly outperforms previous generalizable INRs and validates the usefulness of the locality-aware latents for downstream tasks.
arXiv Detail & Related papers (2023-10-09T11:26:58Z) - SINCO: A Novel structural regularizer for image compression using
implicit neural representations [10.251120382395332]
Implicit neural representations (INR) have been recently proposed as deep learning (DL) based solutions for image compression.
We present structural regularization for INR compression (SINCO) as a novel INR method for image compression.
arXiv Detail & Related papers (2022-10-26T18:35:54Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for
Image Recognition [123.59890802196797]
We propose RepMLP, a multi-layer-perceptron-style neural network building block for image recognition.
We construct convolutional layers inside a RepMLP during training and merge them into the FC for inference.
By inserting RepMLP in traditional CNN, we improve ResNets by 1.8% accuracy on ImageNet, 2.9% for face recognition, and 2.3% mIoU on Cityscapes with lower FLOPs.
arXiv Detail & Related papers (2021-05-05T06:17:40Z) - Adversarial Generation of Continuous Images [31.92891885615843]
In this paper, we propose two novel architectural techniques for building INR-based image decoders.
We use them to build a state-of-the-art continuous image GAN.
Our proposed INR-GAN architecture improves the performance of continuous image generators by several times.
arXiv Detail & Related papers (2020-11-24T11:06:40Z) - High Quality Remote Sensing Image Super-Resolution Using Deep Memory
Connected Network [21.977093907114217]
Single image super-resolution is crucial for many applications such as target detection and image classification.
We propose a novel method named deep memory connected network (DMCN) based on a convolutional neural network to reconstruct high-quality super-resolution images.
arXiv Detail & Related papers (2020-10-01T15:06:02Z) - Lightweight image super-resolution with enhanced CNN [82.36883027158308]
Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR)
We propose a lightweight enhanced SR CNN (LESRCNN) with three successive sub-blocks, an information extraction and enhancement block (IEEB), a reconstruction block (RB) and an information refinement block (IRB)
IEEB extracts hierarchical low-resolution (LR) features and aggregates the obtained features step-by-step to increase the memory ability of the shallow layers on deep layers for SISR.
RB converts low-frequency features into high-frequency features by fusing global
arXiv Detail & Related papers (2020-07-08T18:03:40Z) - Cross-Scale Internal Graph Neural Network for Image Super-Resolution [147.77050877373674]
Non-local self-similarity in natural images has been well studied as an effective prior in image restoration.
For single image super-resolution (SISR), most existing deep non-local methods only exploit similar patches within the same scale of the low-resolution (LR) input image.
This is achieved using a novel cross-scale internal graph neural network (IGNN)
arXiv Detail & Related papers (2020-06-30T10:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.