SINCO: A Novel structural regularizer for image compression using
implicit neural representations
- URL: http://arxiv.org/abs/2210.14974v1
- Date: Wed, 26 Oct 2022 18:35:54 GMT
- Title: SINCO: A Novel structural regularizer for image compression using
implicit neural representations
- Authors: Harry Gao, Weijie Gan, Zhixin Sun, and Ulugbek S. Kamilov
- Abstract summary: Implicit neural representations (INR) have been recently proposed as deep learning (DL) based solutions for image compression.
We present structural regularization for INR compression (SINCO) as a novel INR method for image compression.
- Score: 10.251120382395332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit neural representations (INR) have been recently proposed as deep
learning (DL) based solutions for image compression. An image can be compressed
by training an INR model with fewer weights than the number of image pixels to
map the coordinates of the image to corresponding pixel values. While
traditional training approaches for INRs are based on enforcing pixel-wise
image consistency, we propose to further improve image quality by using a new
structural regularizer. We present structural regularization for INR
compression (SINCO) as a novel INR method for image compression. SINCO imposes
structural consistency of the compressed images to the groundtruth by using a
segmentation network to penalize the discrepancy of segmentation masks
predicted from compressed images. We validate SINCO on brain MRI images by
showing that it can achieve better performance than some recent INR methods.
Related papers
- FCNR: Fast Compressive Neural Representation of Visualization Images [6.648837287947374]
We present FCNR, a fast compressive neural representation for tens of thousands of visualization images.
Built on the recent advances in stereo image compression, FCNR assimilates stereo context modules and joint context transfer modules to compress image pairs.
arXiv Detail & Related papers (2024-07-23T10:34:02Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios.
We introduce a codebook containing frequency domain information as a prior input to the INR network.
This enhances the representational power of INR and provides distinctive conditioning for different image blocks.
arXiv Detail & Related papers (2024-05-27T05:52:13Z) - Enhancing Perception Quality in Remote Sensing Image Compression via Invertible Neural Network [10.427300958330816]
Decoding remote sensing images to achieve high perceptual quality, particularly at lows, remains a significant challenge.
We propose the invertible neural network-based remote sensing image compression (INN-RSIC) method.
Our INN-RSIC significantly outperforms the existing state-of-the-art traditional and deep learning-based image compression methods in terms of perception quality.
arXiv Detail & Related papers (2024-05-17T03:52:37Z) - Neural Image Compression with Quantization Rectifier [7.097091519502871]
We develop a novel quantization (QR) method for image compression that leverages image feature correlation to mitigate the impact of quantization.
Our method designs a neural network architecture that predicts unquantized features from the quantized ones.
In evaluation, we integrate QR into state-of-the-art neural image codecs and compare enhanced models and baselines on the widely-used Kodak benchmark.
arXiv Detail & Related papers (2024-03-25T22:26:09Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
Learned image compression (LIC) methods have experienced significant progress during recent years.
LIC methods fail to explicitly explore the image structure and texture components crucial for image compression.
We present DA-Mask that samples visible patches based on the structure and texture of original images.
We propose a simple yet effective masked compression model (MCM), the first framework that unifies LIC and LIC end-to-end for extremely low-bitrate compression.
arXiv Detail & Related papers (2023-06-27T15:36:22Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
Raw images have distinct advantages over sRGB images, e.g., linearity and fine-grained quantization levels.
They are not widely adopted by general users due to their substantial storage requirements.
We propose a novel framework that learns a compact representation in the latent space, serving as metadata.
arXiv Detail & Related papers (2023-06-21T06:59:07Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - A GAN-based Tunable Image Compression System [13.76136694287327]
This paper rethinks content-based compression by using Generative Adversarial Network (GAN) to reconstruct the non-important regions.
A tunable compression scheme is also proposed in this paper to compress an image to any specific compression ratio without retraining the model.
arXiv Detail & Related papers (2020-01-18T02:40:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.