論文の概要: Food Delivery Time Prediction in Indian Cities Using Machine Learning Models
- arxiv url: http://arxiv.org/abs/2503.15177v1
- Date: Wed, 19 Mar 2025 13:02:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:22:42.887153
- Title: Food Delivery Time Prediction in Indian Cities Using Machine Learning Models
- Title(参考訳): 機械学習モデルを用いたインドの都市におけるフードデリバリー時間予測
- Authors: Ananya Garg, Mohmmad Ayaan, Swara Parekh, Vikranth Udandarao,
- Abstract要約: 本研究では,実時間文脈変数を予測モデルに組み込むことでギャップを解消する。
我々は,線形回帰,決定木,バグング,ランダムフォレスト,XGBoost,LightGBMなどの機械学習アルゴリズムを体系的に比較した。
実験の結果、LightGBMモデルの方が予測精度が良く、R2スコアは0.76、Mean Squared Error(MSE)は20.59で、従来のベースラインモデルよりも優れていた。
- 参考スコア(独自算出の注目度): 0.4893345190925178
- License:
- Abstract: Accurate prediction of food delivery times significantly impacts customer satisfaction, operational efficiency, and profitability in food delivery services. However, existing studies primarily utilize static historical data and often overlook dynamic, real-time contextual factors crucial for precise prediction, particularly in densely populated Indian cities. This research addresses these gaps by integrating real-time contextual variables such as traffic density, weather conditions, local events, and geospatial data (restaurant and delivery location coordinates) into predictive models. We systematically compare various machine learning algorithms, including Linear Regression, Decision Trees, Bagging, Random Forest, XGBoost, and LightGBM, on a comprehensive food delivery dataset specific to Indian urban contexts. Rigorous data preprocessing and feature selection significantly enhanced model performance. Experimental results demonstrate that the LightGBM model achieves superior predictive accuracy, with an R2 score of 0.76 and Mean Squared Error (MSE) of 20.59, outperforming traditional baseline approaches. Our study thus provides actionable insights for improving logistics strategies in complex urban environments. The complete methodology and code are publicly available for reproducibility and further research.
- Abstract(参考訳): フードデリバリー時間の正確な予測は、食品デリバリーサービスの顧客満足度、運用効率、収益性に大きな影響を及ぼす。
しかし、既存の研究は主に静的な歴史的データを利用しており、特に人口密度の高いインドの都市において、正確な予測に不可欠な動的でリアルタイムな文脈要因を見落としていることが多い。
本研究では,交通密度,気象条件,局地的事象,地理空間データ(レストランと配送位置座標)といったリアルタイムな文脈変数を予測モデルに統合することにより,これらのギャップに対処する。
インドの都市環境に特有な包括的食品配信データセットを用いて、線形回帰、決定木、バグング、ランダムフォレスト、XGBoost、LightGBMなどの機械学習アルゴリズムを体系的に比較した。
厳密なデータ前処理と特徴選択により、モデル性能が大幅に向上した。
実験の結果、LightGBMモデルの方が予測精度が良く、R2スコアは0.76、Mean Squared Error(MSE)は20.59で、従来のベースラインモデルよりも優れていた。
そこで本研究では,複雑な都市環境におけるロジスティクス戦略の改善に有効な知見を提供する。
完全な方法論とコードは再現性とさらなる研究のために公開されている。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - UrbanGPT: Spatio-Temporal Large Language Models [34.79169613947957]
本稿では,時空間エンコーダと命令調整パラダイムをシームレスに統合するUrbanPTを提案する。
我々は、様々な公開データセットに対して広範囲な実験を行い、異なる時間的予測タスクをカバーした。
結果は、慎重に設計されたアーキテクチャを持つUrbanPTが、最先端のベースラインを一貫して上回っていることを一貫して示しています。
論文 参考訳(メタデータ) (2024-02-25T12:37:29Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
本研究では,歴史的観察を伴わない関心領域の時空間予測について検討した。
タスクに対してSTSMというモデルを提案する。
私たちの重要な洞察は、関心のある領域に類似している場所から学ぶことです。
論文 参考訳(メタデータ) (2024-01-19T06:26:05Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - Learning Dynamic Graphs from All Contextual Information for Accurate
Point-of-Interest Visit Forecasting [9.670949636600035]
Busyness Graph Neural Network (BysGNN) は、基礎となるマルチコンテキスト相関を学習し、発見するために設計された時間グラフニューラルネットワークである。
文脈的,時間的,空間的な信号をすべて取り入れることで,最先端の予測モデルに対する予測精度の大幅な向上を観察する。
論文 参考訳(メタデータ) (2023-06-28T05:14:03Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - DeepSTCL: A Deep Spatio-temporal ConvLSTM for Travel Demand Prediction [4.0711669706762805]
本稿では,Deep Spatio-Temporal ConvLSTMに基づく新しいディープラーニングトラフィック需要予測フレームワークを提案する。
提案手法は時間的依存と空間的依存を同時に捉えることができる。
ChengduのDIDIオーダーデータセットの実験結果から,本手法が従来のモデルよりも精度と速度で優れていることが示された。
論文 参考訳(メタデータ) (2020-08-22T13:33:31Z) - Post-Estimation Smoothing: A Simple Baseline for Learning with Side
Information [102.18616819054368]
本稿では,構造指標データを予測に組み込む高速かつ効率的な手法として,後推定平滑化演算子を提案する。
滑らかなステップは元の予測器とは分離されているため、機械学習タスクの幅広いクラスに適用できる。
大規模な空間的・時間的データセットに関する実験は,実測後のスムース化の速度と正確さを浮き彫りにした。
論文 参考訳(メタデータ) (2020-03-12T18:04:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。