論文の概要: CoE: Chain-of-Explanation via Automatic Visual Concept Circuit Description and Polysemanticity Quantification
- arxiv url: http://arxiv.org/abs/2503.15234v1
- Date: Wed, 19 Mar 2025 14:13:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:25:30.575162
- Title: CoE: Chain-of-Explanation via Automatic Visual Concept Circuit Description and Polysemanticity Quantification
- Title(参考訳): CoE: 自動視覚概念回路記述と多面性量子化による説明の連鎖
- Authors: Wenlong Yu, Qilong Wang, Chuang Liu, Dong Li, Qinghua Hu,
- Abstract要約: 概念に基づく説明手法は、モデル決定に対するグローバルとローカルの両方の洞察を提供することができる。
意味的視覚概念(VC)における固有の多意味性は、概念の解釈可能性を妨げる。
本稿では,これらの問題に対処するためのCoE(Chain-of-Explanation)アプローチを提案する。
- 参考スコア(独自算出の注目度): 39.07340520164009
- License:
- Abstract: Explainability is a critical factor influencing the wide deployment of deep vision models (DVMs). Concept-based post-hoc explanation methods can provide both global and local insights into model decisions. However, current methods in this field face challenges in that they are inflexible to automatically construct accurate and sufficient linguistic explanations for global concepts and local circuits. Particularly, the intrinsic polysemanticity in semantic Visual Concepts (VCs) impedes the interpretability of concepts and DVMs, which is underestimated severely. In this paper, we propose a Chain-of-Explanation (CoE) approach to address these issues. Specifically, CoE automates the decoding and description of VCs to construct global concept explanation datasets. Further, to alleviate the effect of polysemanticity on model explainability, we design a concept polysemanticity disentanglement and filtering mechanism to distinguish the most contextually relevant concept atoms. Besides, a Concept Polysemanticity Entropy (CPE), as a measure of model interpretability, is formulated to quantify the degree of concept uncertainty. The modeling of deterministic concepts is upgraded to uncertain concept atom distributions. Finally, CoE automatically enables linguistic local explanations of the decision-making process of DVMs by tracing the concept circuit. GPT-4o and human-based experiments demonstrate the effectiveness of CPE and the superiority of CoE, achieving an average absolute improvement of 36% in terms of explainability scores.
- Abstract(参考訳): 説明可能性(Explainability)は、ディープビジョンモデル(DVM)の広範な展開に影響を与える重要な要因である。
概念に基づくポストホックな説明手法は、モデル決定に対するグローバルとローカルの両方の洞察を提供することができる。
しかし、この分野での現在の手法は、グローバルな概念や局所回路に対して、正確かつ十分な言語的説明を自動的に構築することができないという課題に直面している。
特に、セマンティック・ビジュアル・コンセプト(VC)における本質的な多意味性は、概念とDVMの解釈可能性を妨げる。
本稿では,これらの問題に対処するChain-of-Explanation(CoE)アプローチを提案する。
特に、CoEは、グローバルな概念説明データセットを構築するために、VCのデコードと記述を自動化する。
さらに、モデル説明可能性に対する多意味性の影響を軽減するために、最も文脈的に関係する概念原子を識別するために、多意味性解離とフィルタリング機構を設計する。
さらに、モデル解釈可能性の尺度である概念多意味性エントロピー(CPE)を定式化し、概念の不確実性の度合いを定量化する。
決定論的概念のモデリングは、不確実な概念原子分布にアップグレードされる。
最後に、CoEは概念回路をトレースすることで、DVMの意思決定プロセスの言語的局所的な説明を可能にする。
GPT-4oおよび人間による実験は、CPEの有効性とCoEの優位性を実証し、説明可能性の点から平均36%の絶対的な改善を達成した。
関連論文リスト
- Concept Layers: Enhancing Interpretability and Intervenability via LLM Conceptualization [2.163881720692685]
本稿では,概念層をアーキテクチャに組み込むことにより,解釈可能性とインターベンタビリティを既存モデルに組み込む新しい手法を提案する。
我々のアプローチは、モデルの内部ベクトル表現を、再構成してモデルにフィードバックする前に、概念的で説明可能なベクトル空間に投影する。
複数のタスクにまたがるCLを評価し、本来のモデルの性能と合意を維持しつつ、意味のある介入を可能にしていることを示す。
論文 参考訳(メタデータ) (2025-02-19T11:10:19Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Evaluating Readability and Faithfulness of Concept-based Explanations [35.48852504832633]
概念に基づく説明は、大規模言語モデルによって学習された高レベルのパターンを説明するための有望な道として現れます。
現在の手法は、統一的な形式化を欠いた異なる視点から概念にアプローチする。
これにより、概念の中核となる尺度、すなわち忠実さや可読性を評価するのが難しくなります。
論文 参考訳(メタデータ) (2024-04-29T09:20:25Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPTは、概念知識を事前訓練された言語モデルに注入することを目的としている。
これは、事前訓練されたコンテキストで言及されたエンティティの概念を予測するために、外部エンティティの概念予測を利用する。
実験の結果,ConcEPTは概念強化事前学習により概念知識を向上することがわかった。
論文 参考訳(メタデータ) (2024-01-11T05:05:01Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - SurroCBM: Concept Bottleneck Surrogate Models for Generative Post-hoc
Explanation [11.820167569334444]
本稿では,ブラックボックスモデルを説明するために,SurroCBM(Concept Bottleneck Surrogate Models)を提案する。
SurroCBMは、様々なブラックボックスモデルにまたがる共有概念とユニークな概念を特定し、ホック後の説明のために説明可能なサロゲートモデルを使用している。
自己生成データを用いた効果的な学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T17:46:59Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
この研究は、アンテホック解釈可能性、特に概念ボトルネックモデル(CBM)をターゲットにしている。
我々のゴールは、人間の理解可能な概念を2段階の粒度で、高度に解釈可能な意思決定プロセスを認めるフレームワークを設計することである。
この枠組みでは、概念情報は全体像と一般的な非構造概念の類似性にのみ依存せず、画像シーンのパッチ固有の領域に存在するより粒度の細かい概念情報を発見・活用するために概念階層の概念を導入している。
論文 参考訳(メタデータ) (2023-10-03T14:57:31Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z) - From Attribution Maps to Human-Understandable Explanations through
Concept Relevance Propagation [16.783836191022445]
eXplainable Artificial Intelligence(XAI)の分野は、今日の強力だが不透明なディープラーニングモデルに透明性をもたらすことを目指している。
局所的なXAI手法は属性マップの形で個々の予測を説明するが、グローバルな説明手法はモデルが一般的にエンコードするために学んだ概念を視覚化する。
論文 参考訳(メタデータ) (2022-06-07T12:05:58Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
概念活性化ベクトル(Concept Activation Vectors, CAV)のクラスを含む概念的説明を紹介する。
次に、自動的に概念を抽出するアプローチと、それらの注意事項に対処するアプローチについて議論する。
最後に、このような概念に基づく説明が、合成設定や実世界の応用において有用であることを示すケーススタディについて論じる。
論文 参考訳(メタデータ) (2022-02-25T01:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。