Fast MLE and MAPE-Based Device Activity Detection for Grant-Free Access via PSCA and PSCA-Net
- URL: http://arxiv.org/abs/2503.15259v2
- Date: Sun, 23 Mar 2025 13:32:32 GMT
- Title: Fast MLE and MAPE-Based Device Activity Detection for Grant-Free Access via PSCA and PSCA-Net
- Authors: Bowen Tan, Ying Cui,
- Abstract summary: Fast and accurate device activity is the critical challenge in grant-free access for supporting massive machine-type communications.<n>We propose new maximum likelihood estimation (MLE) based device activity detection methods.<n>We present a deep unrolling neural network implementation called PSCA-Net to further reduce the computation time.
- Score: 13.076905065264091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fast and accurate device activity detection is the critical challenge in grant-free access for supporting massive machine-type communications (mMTC) and ultra-reliable low-latency communications (URLLC) in 5G and beyond. The state-of-the-art methods have unsatisfactory error rates or computation times. To address these outstanding issues, we propose new maximum likelihood estimation (MLE) and maximum a posterior estimation (MAPE) based device activity detection methods for known and unknown pathloss that achieve superior error rate and computation time tradeoffs using optimization and deep learning techniques. Specifically, we investigate four non-convex optimization problems for MLE and MAPE in the two pathloss cases, with one MAPE problem being formulated for the first time. For each non-convex problem, we develop an innovative parallel iterative algorithm using the parallel successive convex approximation (PSCA) method. Each PSCA-based algorithm allows parallel computations, uses up to the objective function's second-order information, converges to the problem's stationary points, and has a low per-iteration computational complexity compared to the state-of-the-art algorithms. Then, for each PSCA-based iterative algorithm, we present a deep unrolling neural network implementation, called PSCA-Net, to further reduce the computation time. Each PSCA-Net elegantly marries the underlying PSCA-based algorithm's parallel computation mechanism with the parallelizable neural network architecture and effectively optimizes its step sizes based on vast data samples to speed up the convergence. Numerical results demonstrate that the proposed methods can significantly reduce the error rate and computation time compared to the state-of-the-art methods, revealing their significant values for grant-free access.
Related papers
- Quantum-Based Feature Selection for Multi-classification Problem in
Complex Systems with Edge Computing [15.894122816099133]
A quantum-based feature selection algorithm for the multi-classification problem, namely, QReliefF, is proposed.
Our algorithm is superior in finding the nearest neighbor, reducing the complexity from O(M) to O(sqrt(M)).
arXiv Detail & Related papers (2023-10-01T03:57:13Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Optimizing Objective Functions from Trained ReLU Neural Networks via
Sampling [0.0]
This paper introduces scalable, sampling-based algorithms that optimize trained neural networks with ReLU activations.
We first propose an iterative algorithm that takes advantage of the piecewise linear structure of ReLU neural networks.
We then extend this approach by searching around the neighborhood of the LP solution computed at each iteration.
arXiv Detail & Related papers (2022-05-27T18:35:48Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
Kolmogorov model (KM) is an interpretable and predictable representation approach to learning the underlying probabilistic structure of a set of random variables.
We propose a computationally scalable KM learning algorithm, based on the regularized dual optimization combined with enhanced gradient descent (GD) method.
It is shown that the accuracy of logical relation mining for interpretability by using the proposed KM learning algorithm exceeds $80%$.
arXiv Detail & Related papers (2021-07-11T10:33:02Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - EQ-Net: A Unified Deep Learning Framework for Log-Likelihood Ratio
Estimation and Quantization [25.484585922608193]
We introduce EQ-Net: the first holistic framework that solves both the tasks of log-likelihood ratio (LLR) estimation and quantization using a data-driven method.
We carry out extensive experimental evaluation and demonstrate that our single architecture achieves state-of-the-art results on both tasks.
arXiv Detail & Related papers (2020-12-23T18:11:30Z) - Fast Convergence Algorithm for Analog Federated Learning [30.399830943617772]
We propose an AirComp-based FedSplit algorithm for efficient analog federated learning over wireless channels.
We prove that the proposed algorithm linearly converges to the optimal solutions under the assumption that the objective function is strongly convex and smooth.
Our algorithm is theoretically and experimentally verified to be much more robust to the ill-conditioned problems with faster convergence compared with other benchmark FL algorithms.
arXiv Detail & Related papers (2020-10-30T10:59:49Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.