論文の概要: SENAI: Towards Software Engineering Native Generative Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2503.15282v1
- Date: Wed, 19 Mar 2025 15:02:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:24:46.289560
- Title: SENAI: Towards Software Engineering Native Generative Artificial Intelligence
- Title(参考訳): SENAI: ソフトウェアエンジニアリングのネイティブな生成人工知能を目指して
- Authors: Mootez Saad, José Antonio Hernández López, Boqi Chen, Neil Ernst, Dániel Varró, Tushar Sharma,
- Abstract要約: 本稿では,ソフトウェア工学の知識を大規模言語モデルに統合することについて議論する。
本研究の目的は,LLMが単なる機能的精度を超えて生成タスクを実行できる新しい方向を提案することである。
ソフトウェアエンジニアリング ネイティブな生成モデルは、現在のモデルに存在する欠点を克服するだけでなく、現実世界のソフトウェアエンジニアリングを扱うことができる次世代の生成モデルへの道を開くでしょう。
- 参考スコア(独自算出の注目度): 3.915435754274075
- License:
- Abstract: Large Language Models have significantly advanced the field of code generation, demonstrating the ability to produce functionally correct code snippets. However, advancements in generative AI for code overlook foundational Software Engineering (SE) principles such as modularity, and single responsibility, and concepts such as cohesion and coupling which are critical for creating maintainable, scalable, and robust software systems. These concepts are missing in pipelines that start with pre-training and end with the evaluation using benchmarks. This vision paper argues for the integration of SE knowledge into LLMs to enhance their capability to understand, analyze, and generate code and other SE artifacts following established SE knowledge. The aim is to propose a new direction where LLMs can move beyond mere functional accuracy to perform generative tasks that require adherence to SE principles and best practices. In addition, given the interactive nature of these conversational models, we propose using Bloom's Taxonomy as a framework to assess the extent to which they internalize SE knowledge. The proposed evaluation framework offers a sound and more comprehensive evaluation technique compared to existing approaches such as linear probing. Software engineering native generative models will not only overcome the shortcomings present in current models but also pave the way for the next generation of generative models capable of handling real-world software engineering.
- Abstract(参考訳): 大規模言語モデルはコード生成の分野を著しく進歩させ、機能的に正しいコードスニペットを生成する能力を示している。
しかし、コードのための生成AIの進歩は、モジュラリティや単一責任のような基礎的ソフトウェア工学(SE)の原則や、保守性、スケーラブル、堅牢なソフトウェアシステムを構築する上で重要な凝集や結合といった概念を見落としている。
これらの概念は、事前トレーニングから始まり、ベンチマークによる評価で終わるパイプラインに欠けている。
このビジョンペーパーは、確立したSE知識に従って、SE知識をLLMに統合し、コードや他のSEアーティファクトを理解し、分析し、生成する能力を強化することを主張する。
本研究の目的は,LLMが単なる機能的正確性を超えて,SE原則やベストプラクティスの遵守を必要とする生成タスクを遂行する,新たな方向性を提案することである。
さらに,これらの対話モデルの対話性を考えると,Bloomの分類学をSE知識の内部化の程度を評価する枠組みとして用いることを提案する。
提案した評価フレームワークは,線形探索などの既存手法と比較して,健全で包括的な評価手法を提供する。
ソフトウェアエンジニアリング ネイティブな生成モデルは、現在のモデルに存在する欠点を克服するだけでなく、現実世界のソフトウェアエンジニアリングを扱うことができる次世代の生成モデルへの道を開くでしょう。
関連論文リスト
- Bridging LLM-Generated Code and Requirements: Reverse Generation technique and SBC Metric for Developer Insights [0.0]
本稿では,SBCスコアと呼ばれる新しいスコアリング機構を提案する。
これは、大規模言語モデルの自然言語生成能力を活用するリバースジェネレーション技術に基づいている。
直接コード解析とは異なり、我々のアプローチはAI生成コードからシステム要求を再構築し、元の仕様と比較する。
論文 参考訳(メタデータ) (2025-02-11T01:12:11Z) - Toward Neurosymbolic Program Comprehension [46.874490406174644]
我々は,既存のDL技術の強みと従来の象徴的手法を組み合わせたニューロシンボリック研究の方向性を提唱する。
第1回ニューロシンボリック・プログラム・フレームワークの確立をめざして,提案するアプローチの予備的結果を示す。
論文 参考訳(メタデータ) (2025-02-03T20:38:58Z) - The Fusion of Large Language Models and Formal Methods for Trustworthy AI Agents: A Roadmap [12.363424584297974]
本稿では、次世代の信頼できるAIシステムを推進するためのロードマップを概説する。
我々は、FMがLLMがより信頼性が高く、正式に認定された出力を生成するのにどのように役立つかを示す。
私たちはこの統合が、ソフトウェアエンジニアリングプラクティスの信頼性と効率性の両方を高める可能性があることを認めています。
論文 参考訳(メタデータ) (2024-12-09T14:14:21Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
我々は、レンズを通して自己改善の能力について、新たな視点を提供する。
言語モデルは、正しい応答を生成する場合よりも、応答品質の検証が優れているという観察に感銘を受けて、後学習において、モデル自体を検証対象として、自己改善を形式化する。
SFTとRLHFに基づく自己改善アルゴリズムの2つの自然ファミリーを解析する。
論文 参考訳(メタデータ) (2024-12-02T20:24:17Z) - Next-Gen Software Engineering. Big Models for AI-Augmented Model-Driven Software Engineering [0.0]
本稿は、AIに強化されたソフトウェア工学の現状の概要を提供し、対応する分類学であるAI4SEを開発する。
SEにおけるAI支援ビッグデータのビジョンは、ソフトウェア開発の文脈において両方のアプローチに固有の利点を活かすことを目的としている。
論文 参考訳(メタデータ) (2024-09-26T16:49:57Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review [1.6006550105523192]
大規模言語モデル(LLM)の能力を解き放つ上で,迅速なエンジニアリングが果たす重要な役割を概観する
自己整合性、思考の連鎖、そして生成された知識などの技術を含む、素早い工学の基礎的方法論と先進的な方法論の両方を検査する。
レビューはまた、AI能力の進歩におけるエンジニアリングの急進的な役割を反映し、将来の研究と応用のための構造化されたフレームワークを提供する。
論文 参考訳(メタデータ) (2023-10-23T09:15:18Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。