論文の概要: TruthLens:A Training-Free Paradigm for DeepFake Detection
- arxiv url: http://arxiv.org/abs/2503.15342v1
- Date: Wed, 19 Mar 2025 15:41:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:25:29.295384
- Title: TruthLens:A Training-Free Paradigm for DeepFake Detection
- Title(参考訳): TruthLens:ディープフェイク検出のためのトレーニングフリーパラダイム
- Authors: Ritabrata Chakraborty, Rajatsubhra Chakraborty, Ali Khaleghi Rahimian, Thomas MacDougall,
- Abstract要約: 本稿では,視覚的質問応答(VQA)タスクとしてディープフェイク検出を再定義するトレーニングフリーフレームワークであるTruthLensを紹介する。
TruthLensは最先端の大規模視覚言語モデル(LVLM)を使用して視覚的アーティファクトを観察し記述する。
マルチモーダルアプローチを採用することで、TruthLensは視覚的および意味論的推論をシームレスに統合し、イメージをリアルまたはフェイクとして分類するだけでなく、解釈可能な説明を提供する。
- 参考スコア(独自算出の注目度): 4.64982780843177
- License:
- Abstract: The proliferation of synthetic images generated by advanced AI models poses significant challenges in identifying and understanding manipulated visual content. Current fake image detection methods predominantly rely on binary classification models that focus on accuracy while often neglecting interpretability, leaving users without clear insights into why an image is deemed real or fake. To bridge this gap, we introduce TruthLens, a novel training-free framework that reimagines deepfake detection as a visual question-answering (VQA) task. TruthLens utilizes state-of-the-art large vision-language models (LVLMs) to observe and describe visual artifacts and combines this with the reasoning capabilities of large language models (LLMs) like GPT-4 to analyze and aggregate evidence into informed decisions. By adopting a multimodal approach, TruthLens seamlessly integrates visual and semantic reasoning to not only classify images as real or fake but also provide interpretable explanations for its decisions. This transparency enhances trust and provides valuable insights into the artifacts that signal synthetic content. Extensive evaluations demonstrate that TruthLens outperforms conventional methods, achieving high accuracy on challenging datasets while maintaining a strong emphasis on explainability. By reframing deepfake detection as a reasoning-driven process, TruthLens establishes a new paradigm in combating synthetic media, combining cutting-edge performance with interpretability to address the growing threats of visual disinformation.
- Abstract(参考訳): 高度なAIモデルによって生成された合成画像の拡散は、操作された視覚的コンテンツを識別し理解する上で大きな課題となる。
現在の偽画像検出方法は、多くの場合、解釈可能性を無視しながら精度に重点を置くバイナリ分類モデルに大きく依存している。
このギャップを埋めるために、視覚的質問応答(VQA)タスクとしてディープフェイク検出を再定義する新しいトレーニングフリーフレームワークであるTruthLensを紹介した。
TruthLensは最先端の大規模視覚言語モデル(LVLM)を使用して視覚的アーティファクトを観察し記述し、GPT-4のような大規模言語モデル(LLM)の推論能力と組み合わせて、証拠を分析して情報的決定に集約する。
マルチモーダルアプローチを採用することで、TruthLensは視覚的および意味論的推論をシームレスに統合し、イメージをリアルまたはフェイクとして分類するだけでなく、その決定に対する解釈可能な説明を提供する。
この透明性は信頼を高め、合成コンテンツを信号するアーティファクトに関する貴重な洞察を提供する。
大規模な評価では、TrathLensは従来の手法よりも優れており、挑戦的なデータセットに対して高い精度を達成しつつ、説明可能性に強く重点を置いている。
TruthLensは、ディープフェイク検出を推論駆動のプロセスとして再定義することで、最先端のパフォーマンスと解釈可能性を組み合わせた、合成メディアと戦うための新たなパラダイムを確立します。
関連論文リスト
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - FakeBench: Probing Explainable Fake Image Detection via Large Multimodal Models [62.66610648697744]
我々は人間の知覚に関する生成的視覚的偽造の分類を導入し、人間の自然言語における偽造記述を収集する。
FakeBenchは、検出、推論、解釈、きめ細かい偽造分析の4つの評価基準でLMMを調べている。
本研究は,偽画像検出領域における透明性へのパラダイムシフトを示す。
論文 参考訳(メタデータ) (2024-04-20T07:28:55Z) - ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale [20.12991230544801]
生成画像モデルは、現実的な画像を生成するための有望な技術として登場してきた。
ユーザーがAI生成画像のパターンを効果的に識別し理解できるようにするための需要が高まっている。
我々はAI生成画像の異なるパターンを自動的に抽出する対話型可視化システムASAPを開発した。
論文 参考訳(メタデータ) (2024-04-03T18:20:41Z) - Common Sense Reasoning for Deepfake Detection [13.502008402754658]
最先端のディープフェイク検出アプローチは、ニューラルネットワークを介して抽出された画像ベースの機能に依存している。
我々は,Deepfake Detection VQA (DD-VQA) タスクとしてディープフェイク検出を行い,人間の直感をモデル化した。
我々は、新しい注釈付きデータセットを導入し、DD-VQAタスクのためのビジョン・アンド・ランゲージ・トランスフォーマーベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-31T19:11:58Z) - AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors [24.78672820633581]
深層生成モデルは、偽情報や著作権侵害に対する懸念を高めながら、驚くほど偽のイメージを作成することができる。
実画像と偽画像とを区別するためにディープフェイク検出技術が開発された。
本稿では,視覚言語モデルとアクシデントチューニング技術を用いて,Antifake Promptと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-26T14:23:45Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。