Real-world validation of a multimodal LLM-powered pipeline for High-Accuracy Clinical Trial Patient Matching leveraging EHR data
- URL: http://arxiv.org/abs/2503.15374v1
- Date: Wed, 19 Mar 2025 16:12:11 GMT
- Title: Real-world validation of a multimodal LLM-powered pipeline for High-Accuracy Clinical Trial Patient Matching leveraging EHR data
- Authors: Anatole Callies, Quentin Bodinier, Philippe Ravaud, Kourosh Davarpanah,
- Abstract summary: Patient recruitment in clinical trials is hindered by complex eligibility criteria and labor-intensive chart reviews.<n>We introduce an integration-free, LLM-powered pipeline that automates patient-trial matching using unprocessed documents extracted from EHRs.<n>Our approach leverages (1) the new reasoning-LLM paradigm, enabling the assessment of even the most complex criteria, (2) visual capabilities of latest LLMs to interpret medical records without lossy image-to-text conversions, and (3) multimodal embeddings for efficient medical record search.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Patient recruitment in clinical trials is hindered by complex eligibility criteria and labor-intensive chart reviews. Prior research using text-only models have struggled to address this problem in a reliable and scalable way due to (1) limited reasoning capabilities, (2) information loss from converting visual records to text, and (3) lack of a generic EHR integration to extract patient data. Methods: We introduce a broadly applicable, integration-free, LLM-powered pipeline that automates patient-trial matching using unprocessed documents extracted from EHRs. Our approach leverages (1) the new reasoning-LLM paradigm, enabling the assessment of even the most complex criteria, (2) visual capabilities of latest LLMs to interpret medical records without lossy image-to-text conversions, and (3) multimodal embeddings for efficient medical record search. The pipeline was validated on the n2c2 2018 cohort selection dataset (288 diabetic patients) and a real-world dataset composed of 485 patients from 30 different sites matched against 36 diverse trials. Results: On the n2c2 dataset, our method achieved a new state-of-the-art criterion-level accuracy of 93\%. In real-world trials, the pipeline yielded an accuracy of 87\%, undermined by the difficulty to replicate human decision-making when medical records lack sufficient information. Nevertheless, users were able to review overall eligibility in under 9 minutes per patient on average, representing an 80\% improvement over traditional manual chart reviews. Conclusion: This pipeline demonstrates robust performance in clinical trial patient matching without requiring custom integration with site systems or trial-specific tailoring, thereby enabling scalable deployment across sites seeking to leverage AI for patient matching.
Related papers
- End-To-End Clinical Trial Matching with Large Language Models [0.6151041580858937]
We present an end-to-end pipeline for clinical trial matching using Large Language Models (LLMs)
Our approach identifies relevant candidate trials in 93.3% of cases and achieves a preliminary accuracy of 88.0%.
Our fully end-to-end pipeline can operate autonomously or with human supervision and is not restricted to oncology.
arXiv Detail & Related papers (2024-07-18T12:36:26Z) - Zero-Shot Clinical Trial Patient Matching with LLMs [40.31971412825736]
Large language models (LLMs) offer a promising solution to automated screening.
We design an LLM-based system which, given a patient's medical history as unstructured clinical text, evaluates whether that patient meets a set of inclusion criteria.
Our system achieves state-of-the-art scores on the n2c2 2018 cohort selection benchmark.
arXiv Detail & Related papers (2024-02-05T00:06:08Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Time-dependent Iterative Imputation for Multivariate Longitudinal
Clinical Data [0.0]
Time-Dependent Iterative imputation offers a practical solution for imputing time-series data.
When applied to a cohort consisting of more than 500,000 patient observations, our approach outperformed state-of-the-art imputation methods.
arXiv Detail & Related papers (2023-04-16T16:10:49Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching [70.08786840301435]
We propose CrOss-Modal PseudO-SiamEse network (COMPOSE) to address these challenges for patient-trial matching.
Experiment results show COMPOSE can reach 98.0% AUC on patient-criteria matching and 83.7% accuracy on patient-trial matching.
arXiv Detail & Related papers (2020-06-15T21:01:33Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment
Prediction [67.91606509226132]
Clinical trials are essential for drug development but often suffer from expensive, inaccurate and insufficient patient recruitment.
DeepEnroll is a cross-modal inference learning model to jointly encode enrollment criteria (tabular data) into a shared latent space for matching inference.
arXiv Detail & Related papers (2020-01-22T17:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.