Clairvoyance: A Pipeline Toolkit for Medical Time Series
- URL: http://arxiv.org/abs/2310.18688v1
- Date: Sat, 28 Oct 2023 12:08:03 GMT
- Title: Clairvoyance: A Pipeline Toolkit for Medical Time Series
- Authors: Daniel Jarrett, Jinsung Yoon, Ioana Bica, Zhaozhi Qian, Ari Ercole,
Mihaela van der Schaar
- Abstract summary: Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
- Score: 95.22483029602921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-series learning is the bread and butter of data-driven *clinical
decision support*, and the recent explosion in ML research has demonstrated
great potential in various healthcare settings. At the same time, medical
time-series problems in the wild are challenging due to their highly
*composite* nature: They entail design choices and interactions among
components that preprocess data, impute missing values, select features, issue
predictions, estimate uncertainty, and interpret models. Despite exponential
growth in electronic patient data, there is a remarkable gap between the
potential and realized utilization of ML for clinical research and decision
support. In particular, orchestrating a real-world project lifecycle poses
challenges in engineering (i.e. hard to build), evaluation (i.e. hard to
assess), and efficiency (i.e. hard to optimize). Designed to address these
issues simultaneously, Clairvoyance proposes a unified, end-to-end,
autoML-friendly pipeline that serves as a (i) software toolkit, (ii) empirical
standard, and (iii) interface for optimization. Our ultimate goal lies in
facilitating transparent and reproducible experimentation with complex
inference workflows, providing integrated pathways for (1) personalized
prediction, (2) treatment-effect estimation, and (3) information acquisition.
Through illustrative examples on real-world data in outpatient, general wards,
and intensive-care settings, we illustrate the applicability of the pipeline
paradigm on core tasks in the healthcare journey. To the best of our knowledge,
Clairvoyance is the first to demonstrate viability of a comprehensive and
automatable pipeline for clinical time-series ML.
Related papers
- PhenoFlow: A Human-LLM Driven Visual Analytics System for Exploring Large and Complex Stroke Datasets [21.783005762375417]
PhenoFlow is a visual analytics system that leverages the collaboration between human and Large Language Models (LLMs)
PhenoFlow only utilizes metadata to make inferences and synthesize executable codes, without accessing raw patient data.
Our research demonstrates the potential of utilizing LLMs to tackle current challenges in data-driven clinical decision-making for acute ischemic stroke patients.
arXiv Detail & Related papers (2024-07-23T09:25:59Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
Temporal modelling of medical history can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications.
We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts.
arXiv Detail & Related papers (2022-12-13T19:06:00Z) - Modelling Patient Trajectories Using Multimodal Information [0.0]
We propose a solution to model patient trajectories that combines different types of information and considers the temporal aspect of clinical data.
The developed solution was evaluated on two different clinical outcomes, unexpected patient readmission and disease progression.
arXiv Detail & Related papers (2022-09-09T10:20:54Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Deep EHR Spotlight: a Framework and Mechanism to Highlight Events in
Electronic Health Records for Explainable Predictions [0.9176056742068812]
Deep learning techniques have demonstrated performance in predictive analytic tasks using EHRs.
EHRs contain heterogeneous and multi-modal data points which hinder visualisation and interpretability.
This paper proposes a deep learning framework to: 1) encode patient pathways from EHRs into images, 2) highlight important events within pathway images, and 3) enable more complex predictions with additional intelligibility.
arXiv Detail & Related papers (2021-03-25T22:30:14Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.