論文の概要: FedSCA: Federated Tuning with Similarity-guided Collaborative Aggregation for Heterogeneous Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2503.15390v1
- Date: Wed, 19 Mar 2025 16:27:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:22:17.320065
- Title: FedSCA: Federated Tuning with Similarity-guided Collaborative Aggregation for Heterogeneous Medical Image Segmentation
- Title(参考訳): FedSCA:異種医用画像分割のための類似性誘導型協調的アグリゲーションを用いたフェデレーションチューニング
- Authors: Yumin Zhang, Yan Gao, Haoran Duan, Hanqing Guo, Tejal Shah, Rajiv Ranjan, Bo Wei,
- Abstract要約: トランスフォーマーベースファンデーションモデル (FM) は近年, 医用画像のセグメンテーションにおいて顕著な性能を示した。
しかし、分離病院内の医療画像データセットが限られているため、これらのモデルをスケールすることは困難である。
本稿では,UnderlinetextbfCollaborative UnderlinetextbfAggregation (FedSCA)を用いたFLFMファインチューニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.113755905200009
- License:
- Abstract: Transformer-based foundation models (FMs) have recently demonstrated remarkable performance in medical image segmentation. However, scaling these models is challenging due to the limited size of medical image datasets within isolated hospitals, where data centralization is restricted due to privacy concerns. These constraints, combined with the data-intensive nature of FMs, hinder their broader application. Integrating federated learning (FL) with foundation models (FLFM) fine-tuning offers a potential solution to these challenges by enabling collaborative model training without data sharing, thus allowing FMs to take advantage of a diverse pool of sensitive medical image data across hospitals/clients. However, non-independent and identically distributed (non-IID) data among clients, paired with computational and communication constraints in federated environments, presents an additional challenge that limits further performance improvements and remains inadequately addressed in existing studies. In this work, we propose a novel FLFM fine-tuning framework, \underline{\textbf{Fed}}erated tuning with \underline{\textbf{S}}imilarity-guided \underline{\textbf{C}}ollaborative \underline{\textbf{A}}ggregation (FedSCA), encompassing all phases of the FL process. This includes (1) specially designed parameter-efficient fine-tuning (PEFT) for local client training to enhance computational efficiency; (2) partial low-level adapter transmission for communication efficiency; and (3) similarity-guided collaborative aggregation (SGCA) on the server side to address non-IID issues. Extensive experiments on three FL benchmarks for medical image segmentation demonstrate the effectiveness of our proposed FedSCA, establishing new SOTA performance.
- Abstract(参考訳): トランスフォーマーベースファンデーションモデル (FM) は近年, 医用画像のセグメンテーションにおいて顕著な性能を示した。
しかしながら、これらのモデルのスケーリングは、プライバシ上の懸念からデータ集中化が制限される独立した病院内の医療画像データセットのサイズが制限されているため、困難である。
これらの制約は、FMのデータ集約性と相まって、より広範な応用を妨げる。
FL(Federated Learning)と基礎モデル(FLFM)の微調整を統合することで、データ共有なしで協調的なモデルトレーニングを可能にすることで、FMは病院や利用者にまたがる多様な医療画像データを活用することで、これらの課題に対する潜在的な解決策を提供する。
しかし、クライアント間で非独立で同一に分散された(IIDではない)データは、フェデレートされた環境における計算と通信の制約と組み合わせられ、さらなる性能改善を制限し、既存の研究で不適切な対処を継続する追加の課題が提示される。
本研究では,新しいFLFMファインチューニングフレームワークである \underline{\textbf{Fed}} を,FLプロセスの全フェーズを包含した,新しいFLFMファインチューニングフレームワークである \underline{\textbf{S}}imilarity-guided \underline{\textbf{C}}ollaborative \underline{\textbf{A}}ggregation (FedSCA)を提案する。
本研究は,(1)ローカルクライアント訓練のためのパラメータ効率細調整(PEFT),(2)通信効率向上のための部分的低レベルアダプタトランスミッション,(3)サーバ側の類似性誘導協調アグリゲーション(SGCA)を用いて,非IID問題に対処する。
医療画像セグメンテーションのための3つのFLベンチマークの大規模な実験により、提案したFedSCAの有効性が実証され、新たなSOTA性能が確立された。
関連論文リスト
- Federated Learning with Partially Labeled Data: A Conditional Distillation Approach [6.539281169155941]
本稿では,条件付き蒸留を取り入れた新しいFLフレームワークであるConDistFLを提案する。
ConDistFLは、部分的にラベル付けされたデータセットから効果的な学習を可能にし、分散データセットと非一様データセットのセグメンテーション精度を大幅に改善する。
より優れたセグメンテーション性能に加えて、ConDistFLは計算と通信の効率を維持し、現実世界のアプリケーションにそのスケーラビリティを保証する。
論文 参考訳(メタデータ) (2024-12-25T08:40:03Z) - A Federated Learning-Friendly Approach for Parameter-Efficient Fine-Tuning of SAM in 3D Segmentation [5.011091042850546]
医用画像解析に基礎モデルを適用するには、かなりの量のデータでそれらを微調整する必要がある。
このような微調整のためのタスク固有の医療データを中央で収集することは、多くのプライバシー上の懸念を引き起こす。
フェデレーテッド・ラーニング(FL)は、プライベートな分散データをトレーニングするための効果的な手段を提供するが、大規模な基盤モデルをフェデレーテッドする際の通信コストは、すぐに重大なボトルネックとなる可能性がある。
論文 参考訳(メタデータ) (2024-07-31T16:48:06Z) - Communication-Efficient Hybrid Federated Learning for E-health with Horizontal and Vertical Data Partitioning [67.49221252724229]
E-Healthは、スマートデバイスや医療機関が患者のデータを共同で収集することを可能にする。
eヘルスにフェデレートされた学習を適用することは、多くの課題に直面します。
医療データは水平および垂直に分割される。
HFLとVFLの単純な組み合わせには、訓練効率の低下、難聴収束分析、パラメータチューニング戦略の欠如など、制限がある。
論文 参考訳(メタデータ) (2024-04-15T19:45:07Z) - Unifying and Personalizing Weakly-supervised Federated Medical Image
Segmentation via Adaptive Representation and Aggregation [1.121358474059223]
フェデレートラーニング(FL)は、データプライバシとセキュリティを損なうことなく、複数のサイトが協力して強力なディープモデルをトレーニングすることを可能にする。
微粒な監督を施した弱く監督されたセグメンテーションは、アノテーションコストを下げる大きな可能性を秘めているため、ますます注目されている。
医用画像セグメンテーションのための新しいFLフレームワークであるFedICRAを提案する。
論文 参考訳(メタデータ) (2023-04-12T06:32:08Z) - Learning Personalized Brain Functional Connectivity of MDD Patients from
Multiple Sites via Federated Bayesian Networks [9.873532358701803]
我々は,複数のベイズネットワークの同時学習のための連合型共同推定器NOTEARS-PFLを提案する。
合成および実世界のマルチサイトRS-fMRIデータセットにおける提案手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-01-06T08:58:06Z) - FedFM: Anchor-based Feature Matching for Data Heterogeneity in Federated
Learning [91.74206675452888]
本稿では,各クライアントの特徴を共有カテゴリーのアンカーにマッチさせる新しいFedFM法を提案する。
効率と柔軟性を向上させるため,FedFM-Liteと呼ばれるFedFM変種を提案し,クライアントは同期時間と通信帯域幅のコストを少なくしてサーバと通信する。
論文 参考訳(メタデータ) (2022-10-14T08:11:34Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Closing the Generalization Gap of Cross-silo Federated Medical Image
Segmentation [66.44449514373746]
クロスサイロ・フェデレーション・ラーニング (FL) は近年, 深層学習による医用画像解析において注目されている。
FLでトレーニングされたモデルと、集中的なトレーニングでトレーニングされたモデルの間にはギャップがある。
本稿では,クライアントの問題を回避し,ドリフトギャップを解消するための新しいトレーニングフレームワークであるFedSMを提案する。
論文 参考訳(メタデータ) (2022-03-18T19:50:07Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated Learning(FL)は、明示的なデータ共有を避けながら協調的なモデルトレーニングを可能にする分散機械学習技術である。
本稿では,Auto-FedRLと呼ばれる,効率的な強化学習(RL)に基づくフェデレーションハイパーパラメータ最適化アルゴリズムを提案する。
提案手法の有効性は,CIFAR-10データセットと2つの実世界の医用画像セグメンテーションデータセットの不均一なデータ分割に対して検証される。
論文 参考訳(メタデータ) (2022-03-12T04:11:42Z) - Federated Semi-supervised Medical Image Classification via Inter-client
Relation Matching [58.26619456972598]
フェデレートラーニング(FL)は、ディープ・ネットワークのトレーニングのために、分散医療機関とのコラボレーションで人気が高まっている。
本報告では,実践的かつ困難なFL問題であるtextitFederated Semi-supervised Learning (FSSL)について検討する。
本稿では, 従来の整合性正規化機構を改良し, クライアント間関係マッチング方式を提案する。
論文 参考訳(メタデータ) (2021-06-16T07:58:00Z) - Auto-FedAvg: Learnable Federated Averaging for Multi-Institutional
Medical Image Segmentation [7.009650174262515]
フェデレーションラーニング(FL)は、各参加者のプライバシーを維持しながら共同モデルのトレーニングを可能にします。
FedAvgは、FLプロセス中にサーバ上で分散学習されたモデルを集約するために、各クライアントのデータセットサイズに由来する固定重みを使用する標準的なアルゴリズムである。
本研究では,凝集重みを動的に調整した新しいデータ駆動型アプローチ,auto-fedavgを設計した。
論文 参考訳(メタデータ) (2021-04-20T18:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。