Exploiting Prior Knowledge in Preferential Learning of Individualized Autonomous Vehicle Driving Styles
- URL: http://arxiv.org/abs/2503.15407v1
- Date: Wed, 19 Mar 2025 16:47:56 GMT
- Title: Exploiting Prior Knowledge in Preferential Learning of Individualized Autonomous Vehicle Driving Styles
- Authors: Lukas Theiner, Sebastian Hirt, Alexander Steinke, Rolf Findeisen,
- Abstract summary: Trajectory planning for automated vehicles commonly employs optimization over a moving horizon - Model Predictive Control.<n>Finding a suitable cost function that results in a driving style preferred by passengers remains an ongoing challenge.<n>We employ preferential Bayesian optimization to learn the cost function by iteratively querying a passenger's preference.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory planning for automated vehicles commonly employs optimization over a moving horizon - Model Predictive Control - where the cost function critically influences the resulting driving style. However, finding a suitable cost function that results in a driving style preferred by passengers remains an ongoing challenge. We employ preferential Bayesian optimization to learn the cost function by iteratively querying a passenger's preference. Due to increasing dimensionality of the parameter space, preference learning approaches might struggle to find a suitable optimum with a limited number of experiments and expose the passenger to discomfort when exploring the parameter space. We address these challenges by incorporating prior knowledge into the preferential Bayesian optimization framework. Our method constructs a virtual decision maker from real-world human driving data to guide parameter sampling. In a simulation experiment, we achieve faster convergence of the prior-knowledge-informed learning procedure compared to existing preferential Bayesian optimization approaches and reduce the number of inadequate driving styles sampled.
Related papers
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Integrating Higher-Order Dynamics and Roadway-Compliance into
Constrained ILQR-based Trajectory Planning for Autonomous Vehicles [3.200238632208686]
Trajectory planning aims to produce a globally optimal route for Autonomous Passenger Vehicles.
Existing implementations utilizing the vehicle bicycle kinematic model may not guarantee controllable trajectories.
We augment this model by higher-order terms, including the first and second-order derivatives of curvature and longitudinal jerk.
arXiv Detail & Related papers (2023-09-25T22:30:18Z) - Bi-Level Optimization Augmented with Conditional Variational Autoencoder
for Autonomous Driving in Dense Traffic [0.9281671380673306]
This paper presents a parameterized bi-level optimization that jointly computes the optimal behavioural decisions and the resulting trajectory.
Our approach runs in real-time using a custom GPU-accelerated batch, and a Variational Autoencoder learnt warm-start strategy.
Our approach outperforms state-of-the-art model predictive control and RL approaches in terms of collision rate while being competitive in driving efficiency.
arXiv Detail & Related papers (2022-12-05T12:56:42Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
This work aims to obtain an accurate model for the prediction of the steering angle in an automated driving system.
BO was able to identify, within a limited number of trials, a model -- namely BOST-LSTM -- which resulted, the most accurate when compared to classical end-to-end driving models.
arXiv Detail & Related papers (2021-10-22T15:25:14Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
We show that a naive plug-in approach achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance.
Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
arXiv Detail & Related papers (2020-11-05T18:43:59Z) - Imitative Planning using Conditional Normalizing Flow [2.8978926857710263]
A popular way to plan trajectories in dynamic urban scenarios for Autonomous Vehicles is to rely on explicitly specified and hand crafted cost functions.
We explore the application of normalizing flows for improving the performance of trajectory planning for autonomous vehicles (AVs)
By modeling the trajectory planner's cost manifold as an energy function, we learn a scene conditioned mapping from the prior to a Boltzmann distribution over the AV control space.
arXiv Detail & Related papers (2020-07-31T16:32:23Z) - Efficient Sampling-Based Maximum Entropy Inverse Reinforcement Learning
with Application to Autonomous Driving [35.44498286245894]
We present an efficient sampling-based maximum-entropy inverse reinforcement learning (IRL) algorithm in this paper.
We evaluate the proposed algorithm on real driving data, including both non-interactive and interactive scenarios.
arXiv Detail & Related papers (2020-06-22T01:41:13Z) - Learning from Naturalistic Driving Data for Human-like Autonomous
Highway Driving [11.764518510841235]
Learning cost parameters of a motion planner from naturalistic driving data is proposed.
The learning is achieved by encouraging the selected trajectory to approximate the human driving trajectory under the same traffic situation.
Experiments are conducted with respect to both lane change decision and motion planning, and promising results are achieved.
arXiv Detail & Related papers (2020-05-23T04:39:39Z) - Human Preference-Based Learning for High-dimensional Optimization of
Exoskeleton Walking Gaits [55.59198568303196]
This work presents LineCoSpar, a human-in-the-loop preference-based framework to learn user preferences in high dimensions.
In simulations and human trials, we empirically verify that LineCoSpar is a sample-efficient approach for high-dimensional preference optimization.
This result has implications for exoskeleton gait synthesis, an active field with applications to clinical use and patient rehabilitation.
arXiv Detail & Related papers (2020-03-13T22:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.