Bayesian Optimization and Deep Learning forsteering wheel angle
prediction
- URL: http://arxiv.org/abs/2110.13629v1
- Date: Fri, 22 Oct 2021 15:25:14 GMT
- Title: Bayesian Optimization and Deep Learning forsteering wheel angle
prediction
- Authors: Alessandro Riboni, Nicol\`o Ghioldi, Antonio Candelieri, Matteo
Borrotti
- Abstract summary: This work aims to obtain an accurate model for the prediction of the steering angle in an automated driving system.
BO was able to identify, within a limited number of trials, a model -- namely BOST-LSTM -- which resulted, the most accurate when compared to classical end-to-end driving models.
- Score: 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated driving systems (ADS) have undergone a significant improvement in
the last years. ADS and more precisely self-driving cars technologies will
change the way we perceive and know the world of transportation systems in
terms of user experience, mode choices and business models. The emerging field
of Deep Learning (DL) has been successfully applied for the development of
innovative ADS solutions. However, the attempt to single out the best deep
neural network architecture and tuning its hyperparameters are all expensive
processes, both in terms of time and computational resources. In this work,
Bayesian Optimization (BO) is used to optimize the hyperparameters of a
Spatiotemporal-Long Short Term Memory (ST-LSTM) network with the aim to obtain
an accurate model for the prediction of the steering angle in a ADS. BO was
able to identify, within a limited number of trials, a model -- namely
BOST-LSTM -- which resulted, on a public dataset, the most accurate when
compared to classical end-to-end driving models.
Related papers
- Optical Flow Matters: an Empirical Comparative Study on Fusing Monocular Extracted Modalities for Better Steering [37.46760714516923]
This research introduces a new end-to-end method that exploits multimodal information from a single monocular camera to improve the steering predictions for self-driving cars.
By focusing on the fusion of RGB imagery with depth completion information or optical flow data, we propose a framework that integrates these modalities through both early and hybrid fusion techniques.
arXiv Detail & Related papers (2024-09-18T09:36:24Z) - Less is More: Efficient Brain-Inspired Learning for Autonomous Driving Trajectory Prediction [26.14918154872732]
This paper presents the Human-Like Trajectory Prediction model (H++)
H++ emulates human cognitive processes to improve trajectory prediction in autonomous driving (AD)
Evaluated using the NGSIM, HighD, and MoCAD benchmarks, H++ demonstrates superior performance compared to existing models.
arXiv Detail & Related papers (2024-07-09T16:42:17Z) - EditFollower: Tunable Car Following Models for Customizable Adaptive Cruise Control Systems [28.263763430300504]
We propose a data-driven car-following model that allows for adjusting driving discourtesy levels.
Our model provides valuable insights for the development of ACC systems that take into account drivers' social preferences.
arXiv Detail & Related papers (2024-06-23T15:04:07Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - YOLOPv2: Better, Faster, Stronger for Panoptic Driving Perception [1.6683976936678229]
Multi-tasking learning approaches have achieved promising results in solving panoptic driving perception problems.
This paper proposed an effective and efficient multi-task learning network to simultaneously perform the task of traffic object detection, drivable road area segmentation and lane detection.
Our model achieved the new state-of-the-art (SOTA) performance in terms of accuracy and speed on the challenging BDD100K dataset.
arXiv Detail & Related papers (2022-08-24T11:00:27Z) - Using Neural Networks by Modelling Semi-Active Shock Absorber [0.0]
A permanently increasing number of on-board automotive control systems requires new approaches to their digital mapping.
Various methods applying neural networks (NN) can be good candidates for relevant digital twin (DT) tools in automotive control system design.
The paper presents an approach, which demonstrates how the regression tasks can be efficiently handled by the modeling of a semi-active shock absorber.
arXiv Detail & Related papers (2022-07-19T09:21:21Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.