論文の概要: LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding
- arxiv url: http://arxiv.org/abs/2503.15420v1
- Date: Wed, 19 Mar 2025 17:00:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:24:39.095532
- Title: LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding
- Title(参考訳): LIFT:タスクとデータに依存しないエンコーディングのための潜在命令関数
- Authors: Amirhossein Kazerouni, Soroush Mehraban, Michael Brudno, Babak Taati,
- Abstract要約: Implicit Neural Representations (INR)は、多様なデータドメインをまたいだタスクモデリングを統合するための強力なパラダイムであることが証明されている。
本稿では,メタラーニングによるマルチスケール情報をキャプチャする新しい高性能フレームワークLIFTを紹介する。
また、残差接続と表現頻度符号化を組み込んだLIFTの強化版であるReLIFTについても紹介する。
- 参考スコア(独自算出の注目度): 4.759109475818876
- License:
- Abstract: Implicit Neural Representations (INRs) are proving to be a powerful paradigm in unifying task modeling across diverse data domains, offering key advantages such as memory efficiency and resolution independence. Conventional deep learning models are typically modality-dependent, often requiring custom architectures and objectives for different types of signals. However, existing INR frameworks frequently rely on global latent vectors or exhibit computational inefficiencies that limit their broader applicability. We introduce LIFT, a novel, high-performance framework that addresses these challenges by capturing multiscale information through meta-learning. LIFT leverages multiple parallel localized implicit functions alongside a hierarchical latent generator to produce unified latent representations that span local, intermediate, and global features. This architecture facilitates smooth transitions across local regions, enhancing expressivity while maintaining inference efficiency. Additionally, we introduce ReLIFT, an enhanced variant of LIFT that incorporates residual connections and expressive frequency encodings. With this straightforward approach, ReLIFT effectively addresses the convergence-capacity gap found in comparable methods, providing an efficient yet powerful solution to improve capacity and speed up convergence. Empirical results show that LIFT achieves state-of-the-art (SOTA) performance in generative modeling and classification tasks, with notable reductions in computational costs. Moreover, in single-task settings, the streamlined ReLIFT architecture proves effective in signal representations and inverse problem tasks.
- Abstract(参考訳): Implicit Neural Representations (INR)は、さまざまなデータドメインにわたるタスクモデリングを統合する上で、強力なパラダイムであることが証明されている。
従来のディープラーニングモデルは、通常モダリティに依存し、しばしば異なるタイプの信号に対してカスタムアーキテクチャと目的を必要とする。
しかし、既存のINRフレームワークは、しばしばグローバルな潜在ベクトルに依存するか、より広範な適用性を制限する計算の非効率性を示す。
本稿では,メタラーニングによるマルチスケール情報取得によってこれらの課題に対処する,新しい高性能フレームワークLIFTを紹介する。
LIFTは階層的な潜在ジェネレータとともに複数の並列局所化暗黙関数を活用し、局所的、中間的、グローバルな機能にまたがる統一潜在表現を生成する。
このアーキテクチャは局所的にスムーズな遷移を促進し、推論効率を維持しながら表現性を向上する。
さらに、残差接続と表現頻度符号化を組み込んだLIFTの強化版であるReLIFTを紹介する。
この簡単なアプローチで、ReLIFTはコンバージェンス/コンバージェンスギャップを効果的に解決し、キャパシティを改善し、コンバージェンスを高速化する効率的かつ強力なソリューションを提供する。
実験結果から、LIFTは生成的モデリングおよび分類タスクにおけるSOTA(State-of-the-art)のパフォーマンスを達成し、計算コストの顕著な削減を図っている。
さらに、シングルタスク設定では、合理化されたReLIFTアーキテクチャが信号表現や逆問題タスクに有効であることが証明される。
関連論文リスト
- STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation [7.2888019138115245]
Inlicit Neural Representations (INR) は、連続的な信号をモデリングするための強力なフレームワークとして登場した。
ReLUベースのネットワークのスペクトルバイアスは、十分に確立された制限であり、ターゲット信号の微細な詳細を捕捉する能力を制限する。
Sinusoidal Trainable Function Activation (STAF)について紹介する。
STAFは本質的に周波数成分を変調し、自己適応型スペクトル学習を可能にする。
論文 参考訳(メタデータ) (2025-02-02T18:29:33Z) - GUIDE: A Global Unified Inference Engine for Deploying Large Language Models in Heterogeneous Environments [1.0558515062670693]
現実世界のシナリオにおける大規模言語モデル(LLM)は依然として重要な課題である。
これらの課題は、しばしばメモリ使用率、レイテンシ、スループットの非効率につながる。
バッチレイテンシ、TTFT、デコードスループットといった主要なメトリクスに対して、予測エラーを9.9%から42.3%の精度で達成し、これらの問題に対処するフレームワークを開発する。
論文 参考訳(メタデータ) (2024-12-06T05:46:43Z) - Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey [16.89460694470542]
Inlicit Neural Representation (INR) は知識表現のパラダイムとして登場した。
INRは、データを連続的な暗黙の関数としてモデル化するために多層パーセプトロン(MLP)を利用する。
この調査では、アクティベーション機能、位置エンコーディング、統合戦略、ネットワーク構造という4つの重要な領域に分類する明確な分類法を紹介した。
論文 参考訳(メタデータ) (2024-11-06T06:14:24Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NASが登場し、データセット依存からタスク依存への探索プロセスを一般化した。
本稿では多目的拡散プロセスを通じて拡散NAGを拡張するPOMONAGを紹介する。
結果は、NAS201とMobileNetV3の2つの検索スペースで検証され、15の画像分類データセットで評価された。
論文 参考訳(メタデータ) (2024-09-30T16:05:29Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
現在の物体検出器は、通常マルチレベル特徴融合(MFF)のための特徴ピラミッド(FP)モジュールを持つ。
我々は,既存のFPがより優れたMFF結果を提供するのに役立つ,新しい,効率的なコンテキストモデリング機構を提案する。
特に,包括的文脈を2種類の表現に分解・凝縮して高効率化を図っている。
論文 参考訳(メタデータ) (2022-07-14T01:45:03Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。