Zero-Knowledge Federated Learning: A New Trustworthy and Privacy-Preserving Distributed Learning Paradigm
- URL: http://arxiv.org/abs/2503.15550v2
- Date: Mon, 24 Mar 2025 03:55:23 GMT
- Title: Zero-Knowledge Federated Learning: A New Trustworthy and Privacy-Preserving Distributed Learning Paradigm
- Authors: Yuxin Jin, Taotao Wang, Qing Yang, Long Shi, Shengli Zhang,
- Abstract summary: Federated Learning (FL) has emerged as a promising paradigm in distributed machine learning.<n>ZKPs offer a potential solution by establishing trust and enhancing system integrity throughout the FL process.<n>This article makes two key contributions. First, we propose a structured ZK-FL framework that categorizes and analyzes the technical roles of ZKPs.<n>Second, we introduce a novel algorithm, Verifiable Client Selection FL (Veri-CS-FL), which employs ZKPs to refine the client selection process.
- Score: 12.329085185367637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has emerged as a promising paradigm in distributed machine learning, enabling collaborative model training while preserving data privacy. However, despite its many advantages, FL still contends with significant challenges -- most notably regarding security and trust. Zero-Knowledge Proofs (ZKPs) offer a potential solution by establishing trust and enhancing system integrity throughout the FL process. Although several studies have explored ZKP-based FL (ZK-FL), a systematic framework and comprehensive analysis are still lacking. This article makes two key contributions. First, we propose a structured ZK-FL framework that categorizes and analyzes the technical roles of ZKPs across various FL stages and tasks. Second, we introduce a novel algorithm, Verifiable Client Selection FL (Veri-CS-FL), which employs ZKPs to refine the client selection process. In Veri-CS-FL, participating clients generate verifiable proofs for the performance metrics of their local models and submit these concise proofs to the server for efficient verification. The server then selects clients with high-quality local models for uploading, subsequently aggregating the contributions from these selected clients. By integrating ZKPs, Veri-CS-FL not only ensures the accuracy of performance metrics but also fortifies trust among participants while enhancing the overall efficiency and security of FL systems.
Related papers
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.
This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - Novel clustered federated learning based on local loss [14.380553970274242]
This paper proposes LCFL, a novel metric for evaluating data distributions in learning.
It aligns with learning requirements, accurately addresses privacy concerns, and provides more accurate classification.
arXiv Detail & Related papers (2024-07-12T15:37:05Z) - Privacy and Accuracy Implications of Model Complexity and Integration in Heterogeneous Federated Learning [8.842172558292027]
Federated Learning (FL) has been proposed as a privacy-preserving solution for distributed machine learning.<n>Recent studies have shown that it is susceptible to membership inference attacks (MIA), which can compromise the privacy of client data.
arXiv Detail & Related papers (2023-11-29T15:54:15Z) - zkFL: Zero-Knowledge Proof-based Gradient Aggregation for Federated Learning [13.086807746204597]
Federated learning (FL) is a machine learning paradigm, which enables multiple and decentralized clients to collaboratively train a model under the orchestration of a central aggregator.
Traditional FL relies on the trust assumption of the central aggregator, which forms cohorts of clients honestly.
We introduce zkFL, which leverages zero-knowledge proofs to tackle the issue of a malicious aggregator during the training model aggregation process.
arXiv Detail & Related papers (2023-10-04T03:24:33Z) - FederatedTrust: A Solution for Trustworthy Federated Learning [3.202927443898192]
The rapid expansion of the Internet of Things (IoT) has presented challenges for centralized Machine and Deep Learning (ML/DL) methods.
To address concerns regarding data privacy, collaborative and privacy-preserving ML/DL techniques like Federated Learning (FL) have emerged.
arXiv Detail & Related papers (2023-02-20T09:02:24Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
In this paper, we propose a novel reliable federated disentangling network, termed RFedDis.
To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling.
Our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.
arXiv Detail & Related papers (2023-01-30T11:46:34Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
Federated learning aims to train predictive models for data that is distributed across clients, under the orchestration of a server.
We propose FL GAMES, a game-theoretic framework for federated learning that learns causal features that are invariant across clients.
arXiv Detail & Related papers (2022-10-31T22:59:03Z) - A Fair Federated Learning Framework With Reinforcement Learning [23.675056844328]
Federated learning (FL) is a paradigm where many clients collaboratively train a model under the coordination of a central server.
We propose a reinforcement learning framework, called PG-FFL, which automatically learns a policy to assign aggregation weights to clients.
We conduct extensive experiments over diverse datasets to verify the effectiveness of our framework.
arXiv Detail & Related papers (2022-05-26T15:10:16Z) - Dubhe: Towards Data Unbiasedness with Homomorphic Encryption in
Federated Learning Client Selection [16.975086164684882]
Federated learning (FL) is a distributed machine learning paradigm that allows clients to collaboratively train a model over their own local data.
We mathematically demonstrate the cause of performance degradation in FL and examine the performance of FL over various datasets.
We propose a pluggable system-level client selection method named Dubhe, which allows clients to proactively participate in training, preserving their privacy with the assistance of HE.
arXiv Detail & Related papers (2021-09-08T13:00:46Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.