論文の概要: A Novel Collaborative Framework for Efficient Synchronization in Split Federated Learning over Wireless Networks
- arxiv url: http://arxiv.org/abs/2503.15559v2
- Date: Tue, 07 Oct 2025 21:23:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 14:21:17.960082
- Title: A Novel Collaborative Framework for Efficient Synchronization in Split Federated Learning over Wireless Networks
- Title(参考訳): 無線ネットワーク上でのフェデレーション学習における効率的な同期のための新しい協調フレームワーク
- Authors: Haoran Gao, Samuel D. Okegbile, Jun Cai,
- Abstract要約: 我々は、デバイス間コラボレーションを通じてワークロードの再配布を再定義する、CSFL(Collaborative Split Federated Learning)と呼ばれる新しいフレームワークを提案する。
CSFLは、独自の前方伝播を完了した後に、未完成のボトルネックデバイスの層をシームレスに引き継ぐ効率的なデバイスを可能にする。
このコラボレーティブなプロセスは、D2D通信によってサポートされ、ネットワーク全体の同期進行を維持しながら、ボトルネックデバイスを早期にオフロードすることができる。
- 参考スコア(独自算出の注目度): 4.462403784684656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Split Federated Learning (SFL) offers a promising approach for distributed model training in wireless networks, combining the layer-partitioning advantages of split learning with the federated aggregation that ensures global convergence. However, in heterogeneous wireless environments, disparities in device capabilities and channel conditions make strict round-based synchronization heavily straggler-dominated, thereby limiting both efficiency and scalability. To address this challenge, we propose a new framework, called Collaborative Split Federated Learning (CSFL), that redefines workload redistribution through device-to-device collaboration. Building on the flexibility of model partitioning, CSFL enables efficient devices, after completing their own forward propagation, to seamlessly take over the unfinished layers of bottleneck devices. This collaborative process, supported by D2D communications, allows bottleneck devices to offload computation earlier while maintaining synchronized progression across the network. Beyond the system design, we highlight key technical enablers such as privacy protection, multi-perspective matching, and incentive mechanisms, and discuss practical challenges including matching balance, privacy risks, and incentive sustainability. A case study demonstrates that CSFL significantly reduces training latency without compromising convergence speed or accuracy, underscoring collaboration as a key enabler for synchronization-efficient learning in next-generation wireless networks.
- Abstract(参考訳): Split Federated Learning (SFL)は、分割学習の階層的利点と、グローバルな収束を保証するフェデレーションアグリゲーションを組み合わせることで、無線ネットワークにおける分散モデルトレーニングに有望なアプローチを提供する。
しかし、異種無線環境では、デバイス能力とチャネル条件の相違により、厳密なラウンドベース同期が支配的になり、効率とスケーラビリティの両方が制限される。
この課題に対処するために、デバイス間コラボレーションを通じてワークロードの再配布を再定義する、CSFL(Collaborative Split Federated Learning)と呼ばれる新しいフレームワークを提案する。
モデルのパーティショニングの柔軟性に基づいて、CSFLは、独自の前方伝播を完了した後、未完成のボトルネックデバイスのレイヤをシームレスに引き継ぐ効率的なデバイスを可能にする。
このコラボレーティブなプロセスは、D2D通信によってサポートされ、ボトルネックデバイスがネットワーク全体の同期処理を維持しながら、計算を早期にオフロードすることを可能にする。
システム設計の他に、プライバシ保護、マルチパースペクティブマッチング、インセンティブメカニズムといった重要な技術実現要因を強調し、バランスの整合、プライバシリスク、インセンティブサステナビリティといった実践的な課題について議論する。
ケーススタディでは、CSFLは収束速度や精度を損なうことなくトレーニングの遅延を著しく低減し、次世代無線ネットワークにおける同期効率学習の鍵となるコラボを強調している。
関連論文リスト
- Adaptive Deadline and Batch Layered Synchronized Federated Learning [66.93447103966439]
フェデレートラーニング(FL)は、データプライバシを保持しながら、分散エッジデバイス間で協調的なモデルトレーニングを可能にする。
我々は,レイヤワイドアグリゲーションのために,ラウンド単位の期限とユーザ固有のバッチサイズを共同で最適化する新しいフレームワークADEL-FLを提案する。
論文 参考訳(メタデータ) (2025-05-29T19:59:18Z) - Efficient Federated Split Learning for Large Language Models over Communication Networks [14.461758448289908]
分散方式で訓練済みの大規模言語モデル(LLM)を微調整することは、リソース制約のあるエッジデバイスに重大な課題をもたらす。
我々は,分割フェデレーション学習とパラメータ効率のよい微調整技術を統合する新しいフレームワークであるFedsLLMを提案する。
論文 参考訳(メタデータ) (2025-04-20T16:16:54Z) - FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
フェデレートラーニング(FL)は、プライバシ保護機械学習のトレーニングパラダイムとして広く採用されている。
本稿では、非同期更新を適応的フェデレーション最適化と証明可能な保証に組み込む新しい手法であるFADASについて紹介する。
提案アルゴリズムの収束率を厳格に確立し,FADASが他の非同期FLベースラインよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-07-25T20:02:57Z) - Federated Learning based on Pruning and Recovery [0.0]
このフレームワークは非同期学習アルゴリズムとプルーニング技術を統合している。
異種デバイスを含むシナリオにおいて、従来のフェデレーション学習アルゴリズムの非効率性に対処する。
また、非同期アルゴリズムで特定のクライアントの不安定な問題や不適切なトレーニングにも取り組みます。
論文 参考訳(メタデータ) (2024-03-16T14:35:03Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
本稿では,クライアントと異なる計算資源をペアリングする,新しい分割フェデレーション学習(SFL)フレームワークを提案する。
グラフエッジ選択問題として,学習遅延の最適化を再構築し,グレディアルゴリズムを提案する。
シミュレーションの結果,提案手法はFLトレーニング速度を大幅に向上し,高い性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-08-26T11:10:54Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning(FL)は、デバイス上でのトレーニングとサーバベースのアグリゲーションを組み合わせた、協調的な機械学習フレームワークである。
FLシステムにおけるストラグラー問題に対処するために,周期的アグリゲーションを用いた非同期FL設計を提案する。
年齢認識の集約重み付け設計は,非同期FL設定における学習性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-14T17:33:01Z) - Efficient and Light-Weight Federated Learning via Asynchronous
Distributed Dropout [22.584080337157168]
非同期学習プロトコルは最近、特にフェデレートラーニング(FL)設定において注目を集めている。
分散環境でデバイスの不均一性を処理するためにドロップアウト正規化を利用する新しい非同期FLフレームワークである textttAsyncDrop を提案する。
全体として、textttAsyncDropは、最先端の非同期メソッドと比較してパフォーマンスが向上する。
論文 参考訳(メタデータ) (2022-10-28T13:00:29Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Blockchain-enabled Server-less Federated Learning [5.065631761462706]
我々は、(BC)技術によって強化された非同期サーバーレスフェデレートラーニングソリューションに焦点を当てる。
主に採用されているFLアプローチとは対照的に、クライアントがローカル更新を送信する際にモデルアグリゲーションを行う非同期手法を提唱する。
論文 参考訳(メタデータ) (2021-12-15T07:41:23Z) - Device Scheduling and Update Aggregation Policies for Asynchronous
Federated Learning [72.78668894576515]
Federated Learning (FL)は、新しく登場した分散機械学習(ML)フレームワークである。
本稿では,FLシステムにおけるトラグラー問題を排除するために,周期的なアグリゲーションを伴う非同期FLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-23T18:57:08Z) - Stragglers Are Not Disaster: A Hybrid Federated Learning Algorithm with
Delayed Gradients [21.63719641718363]
フェデレーション・ラーニング(federated learning, fl)は、多数の分散コンピューティングデバイスで合同モデルをトレーニングする、新しい機械学習フレームワークである。
本稿では,効率と有効性における学習バランスを実現するための新しいflアルゴリズムであるhybrid federated learning(hfl)を提案する。
論文 参考訳(メタデータ) (2021-02-12T02:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。