Localized Physics-informed Gaussian Processes with Curriculum Training for Topology Optimization
- URL: http://arxiv.org/abs/2503.15561v1
- Date: Tue, 18 Mar 2025 22:59:16 GMT
- Title: Localized Physics-informed Gaussian Processes with Curriculum Training for Topology Optimization
- Authors: Amin Yousefpour, Shirin Hosseinmardi, Xiangyu Sun, Ramin Bostanabad,
- Abstract summary: We introduce a simultaneous and meshfree topology optimization (TO) framework based on physics-informed Gaussian processes (GPs)<n>Our framework endows all design and state variables via GP priors which have a shared, multi-output mean function that is parametrized via a customized deep neural network (DNN)<n>Our TO approach yields well-defined material interfaces and has a built-in continuation nature that promotes global optimality.
- Score: 3.6352820455705372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a simultaneous and meshfree topology optimization (TO) framework based on physics-informed Gaussian processes (GPs). Our framework endows all design and state variables via GP priors which have a shared, multi-output mean function that is parametrized via a customized deep neural network (DNN). The parameters of this mean function are estimated by minimizing a multi-component loss function that depends on the performance metric, design constraints, and the residuals on the state equations. Our TO approach yields well-defined material interfaces and has a built-in continuation nature that promotes global optimality. Other unique features of our approach include (1) its customized DNN which, unlike fully connected feed-forward DNNs, has a localized learning capacity that enables capturing intricate topologies and reducing residuals in high gradient fields, (2) its loss function that leverages localized weights to promote solution accuracy around interfaces, and (3) its use of curriculum training to avoid local optimality.To demonstrate the power of our framework, we validate it against commercial TO package COMSOL on three problems involving dissipated power minimization in Stokes flow.
Related papers
- Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
Decentralized server (DFL) eliminates reliance on client-client architecture.
Non-smooth regularization is often incorporated into machine learning tasks.
We propose a novel novel DNCFL algorithm to solve these problems.
arXiv Detail & Related papers (2025-04-17T08:32:25Z) - Finite Element Neural Network Interpolation. Part I: Interpretable and Adaptive Discretization for Solving PDEs [44.99833362998488]
We present a sparse neural network architecture extending previous work on Embedded Finite Element Neural Networks (EFENN)<n>Due to their mesh-based structure, EFENN requires significantly fewer trainable parameters than fully connected neural networks.<n>Our FENNI framework, within the EFENN framework, brings improvements to the HiDeNN approach.
arXiv Detail & Related papers (2024-12-07T18:31:17Z) - Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks [0.24578723416255746]
We present a non-overlapping, Schwarz-type domain decomposition method with a generalized interface condition.
Our approach employs physics and equality-constrained artificial neural networks (PECANN) within each subdomain.
A distinct advantage our domain decomposition method is its ability to learn solutions to both Poisson's and Helmholtz equations.
arXiv Detail & Related papers (2024-09-20T16:48:55Z) - Simultaneous and Meshfree Topology Optimization with Physics-informed Gaussian Processes [0.0]
Topology optimization (TO) provides a principled mathematical approach for optimizing the performance of a structure by designing its material spatial distribution in a pre-defined domain and subject to a set of constraints.
We develop a new class of TO methods based on the framework of Gaussian processes (GPs) whose mean functions are parameterized via deep neural networks.
To test our method against conventional TO approaches implemented in commercial software, we evaluate it on four problems involving the minimization of dissipated power in Stokes flow.
arXiv Detail & Related papers (2024-08-07T01:01:35Z) - Exploring End-to-end Differentiable Neural Charged Particle Tracking -- A Loss Landscape Perspective [0.0]
We propose an E2E differentiable decision-focused learning scheme for particle tracking.
We show that differentiable variations of discrete assignment operations allows for efficient network optimization.
We argue that E2E differentiability provides, besides the general availability of gradient information, an important tool for robust particle tracking to mitigate prediction instabilities.
arXiv Detail & Related papers (2024-07-18T11:42:58Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach.
We propose a versatile framework that can tackle both inverse and forward problems.
arXiv Detail & Related papers (2021-09-30T05:55:35Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - De-homogenization using Convolutional Neural Networks [1.0323063834827415]
This paper presents a deep learning-based de-homogenization method for structural compliance minimization.
For an appropriate choice of parameters, the de-homogenized designs perform within $7-25%$ of the homogenization-based solution.
arXiv Detail & Related papers (2021-05-10T09:50:06Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.