Exploring End-to-end Differentiable Neural Charged Particle Tracking -- A Loss Landscape Perspective
- URL: http://arxiv.org/abs/2407.13420v1
- Date: Thu, 18 Jul 2024 11:42:58 GMT
- Title: Exploring End-to-end Differentiable Neural Charged Particle Tracking -- A Loss Landscape Perspective
- Authors: Tobias Kortus, Ralf Keidel, Nicolas R. Gauger,
- Abstract summary: We propose an E2E differentiable decision-focused learning scheme for particle tracking.
We show that differentiable variations of discrete assignment operations allows for efficient network optimization.
We argue that E2E differentiability provides, besides the general availability of gradient information, an important tool for robust particle tracking to mitigate prediction instabilities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurement and analysis of high energetic particles for scientific, medical or industrial applications is a complex procedure, requiring the design of sophisticated detector and data processing systems. The development of adaptive and differentiable software pipelines using a combination of conventional and machine learning algorithms is therefore getting ever more important to optimize and operate the system efficiently while maintaining end-to-end (E2E) differentiability. We propose for the application of charged particle tracking an E2E differentiable decision-focused learning scheme using graph neural networks with combinatorial components solving a linear assignment problem for each detector layer. We demonstrate empirically that including differentiable variations of discrete assignment operations allows for efficient network optimization, working better or on par with approaches that lack E2E differentiability. In additional studies, we dive deeper into the optimization process and provide further insights from a loss landscape perspective. We demonstrate that while both methods converge into similar performing, globally well-connected regions, they suffer under substantial predictive instability across initialization and optimization methods, which can have unpredictable consequences on the performance of downstream tasks such as image reconstruction. We also point out a dependency between the interpolation factor of the gradient estimator and the prediction stability of the model, suggesting the choice of sufficiently small values. Given the strong global connectivity of learned solutions and the excellent training performance, we argue that E2E differentiability provides, besides the general availability of gradient information, an important tool for robust particle tracking to mitigate prediction instabilities by favoring solutions that perform well on downstream tasks.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be? [0.0]
This study investigates the potential accuracy of physics-informed neural networks, contrasting their approach with previous similar works and traditional numerical methods.
We find that selecting improved optimization algorithms significantly enhances the accuracy of the results.
Simple modifications to the loss function may also improve precision, offering an additional avenue for enhancement.
arXiv Detail & Related papers (2024-05-07T11:50:25Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Neural Networks with Quantization Constraints [111.42313650830248]
We present a constrained learning approach to quantization training.
We show that the resulting problem is strongly dual and does away with gradient estimations.
We demonstrate that the proposed approach exhibits competitive performance in image classification tasks.
arXiv Detail & Related papers (2022-10-27T17:12:48Z) - Learning Stochastic Graph Neural Networks with Constrained Variance [18.32587282139282]
graph neural networks (SGNNs) are information processing architectures that learn representations from data over random graphs.
We propose a variance-constrained optimization problem for SGNNs, balancing the expected performance and the deviation.
An alternating gradient-dual learning procedure is undertaken that solves the problem by updating the SGNN parameters with descent and the dual variable with ascent.
arXiv Detail & Related papers (2022-01-29T15:55:58Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
We present a novel approach for adaptive, differentiable parameterization of large-scale random fields.
The developed technique is based on principal component analysis (PCA) but modifies a purely data-driven basis of principal components considering objective function behavior.
Three algorithms for optimal parameter decomposition are presented and applied to an objective of 2D synthetic history matching.
arXiv Detail & Related papers (2020-06-02T18:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.