GASP: Unifying Geometric and Semantic Self-Supervised Pre-training for Autonomous Driving
- URL: http://arxiv.org/abs/2503.15672v1
- Date: Wed, 19 Mar 2025 20:00:27 GMT
- Title: GASP: Unifying Geometric and Semantic Self-Supervised Pre-training for Autonomous Driving
- Authors: William Ljungbergh, Adam Lilja, Adam Tonderski. Arvid Laveno Ling, Carl Lindström, Willem Verbeke, Junsheng Fu, Christoffer Petersson, Lars Hammarstrand, Michael Felsberg,
- Abstract summary: We propose a geometric and semantic self-supervised pre-training method, GASP, that learns a unified representation by predicting, at any queried future point in spacetime.<n>By modeling geometric and semantic 4D occupancy fields instead of raw sensor measurements, the model learns a structured, general representation of the environment and its evolution through time.
- Score: 12.889523014369884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised pre-training based on next-token prediction has enabled large language models to capture the underlying structure of text, and has led to unprecedented performance on a large array of tasks when applied at scale. Similarly, autonomous driving generates vast amounts of spatiotemporal data, alluding to the possibility of harnessing scale to learn the underlying geometric and semantic structure of the environment and its evolution over time. In this direction, we propose a geometric and semantic self-supervised pre-training method, GASP, that learns a unified representation by predicting, at any queried future point in spacetime, (1) general occupancy, capturing the evolving structure of the 3D scene; (2) ego occupancy, modeling the ego vehicle path through the environment; and (3) distilled high-level features from a vision foundation model. By modeling geometric and semantic 4D occupancy fields instead of raw sensor measurements, the model learns a structured, generalizable representation of the environment and its evolution through time. We validate GASP on multiple autonomous driving benchmarks, demonstrating significant improvements in semantic occupancy forecasting, online mapping, and ego trajectory prediction. Our results demonstrate that continuous 4D geometric and semantic occupancy prediction provides a scalable and effective pre-training paradigm for autonomous driving. For code and additional visualizations, see \href{https://research.zenseact.com/publications/gasp/.
Related papers
- Semi-Supervised Vision-Centric 3D Occupancy World Model for Autonomous Driving [22.832008530490167]
We propose a semi-supervised vision-centric 3D occupancy world model, PreWorld, to leverage the potential of 2D labels.<n>PreWorld achieves competitive performance across 3D occupancy prediction, 4D occupancy forecasting and motion planning tasks.
arXiv Detail & Related papers (2025-02-11T07:12:26Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - End-to-End Autonomous Driving without Costly Modularization and 3D Manual Annotation [34.070813293944944]
We propose UAD, a method for vision-based end-to-end autonomous driving (E2EAD)
Our motivation stems from the observation that current E2EAD models still mimic the modular architecture in typical driving stacks.
Our UAD achieves 38.7% relative improvements over UniAD on the average collision rate in nuScenes and surpasses VAD for 41.32 points on the driving score in CARLA's Town05 Long benchmark.
arXiv Detail & Related papers (2024-06-25T16:12:52Z) - DriveWorld: 4D Pre-trained Scene Understanding via World Models for Autonomous Driving [67.46481099962088]
Current vision-centric pre-training typically relies on either 2D or 3D pre-text tasks, overlooking the temporal characteristics of autonomous driving as a 4D scene understanding task.
We introduce emphcentricDriveWorld, which is capable of pre-training from multi-camera driving videos in atemporal fashion.
DriveWorld delivers promising results on various autonomous driving tasks.
arXiv Detail & Related papers (2024-05-07T15:14:20Z) - GenAD: Generative End-to-End Autonomous Driving [13.332272121018285]
GenAD is a generative framework that casts autonomous driving into a generative modeling problem.
We propose an instance-centric scene tokenizer that first transforms the surrounding scenes into map-aware instance tokens.
We then employ a variational autoencoder to learn the future trajectory distribution in a structural latent space for trajectory prior modeling.
arXiv Detail & Related papers (2024-02-18T08:21:05Z) - SEPT: Towards Efficient Scene Representation Learning for Motion
Prediction [19.111948522155004]
This paper presents SEPT, a modeling framework that leverages self-supervised learning to develop powerful models for complex traffic scenes.
experiments demonstrate that SEPT, without elaborate architectural design or feature engineering, achieves state-of-the-art performance on the Argoverse 1 and Argoverse 2 motion forecasting benchmarks.
arXiv Detail & Related papers (2023-09-26T21:56:03Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
We propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving.
We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos.
In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input.
In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only.
arXiv Detail & Related papers (2023-01-03T08:52:49Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation.
We propose a framework that decouples occupancy prediction into: representation learning and prediction within the learned latent space.
arXiv Detail & Related papers (2022-10-03T22:04:00Z) - ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal
Feature Learning [132.20119288212376]
We propose a spatial-temporal feature learning scheme towards a set of more representative features for perception, prediction and planning tasks simultaneously.
To the best of our knowledge, we are the first to systematically investigate each part of an interpretable end-to-end vision-based autonomous driving system.
arXiv Detail & Related papers (2022-07-15T16:57:43Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.