GenAD: Generative End-to-End Autonomous Driving
- URL: http://arxiv.org/abs/2402.11502v3
- Date: Sun, 7 Apr 2024 02:42:27 GMT
- Title: GenAD: Generative End-to-End Autonomous Driving
- Authors: Wenzhao Zheng, Ruiqi Song, Xianda Guo, Chenming Zhang, Long Chen,
- Abstract summary: GenAD is a generative framework that casts autonomous driving into a generative modeling problem.
We propose an instance-centric scene tokenizer that first transforms the surrounding scenes into map-aware instance tokens.
We then employ a variational autoencoder to learn the future trajectory distribution in a structural latent space for trajectory prior modeling.
- Score: 13.332272121018285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Directly producing planning results from raw sensors has been a long-desired solution for autonomous driving and has attracted increasing attention recently. Most existing end-to-end autonomous driving methods factorize this problem into perception, motion prediction, and planning. However, we argue that the conventional progressive pipeline still cannot comprehensively model the entire traffic evolution process, e.g., the future interaction between the ego car and other traffic participants and the structural trajectory prior. In this paper, we explore a new paradigm for end-to-end autonomous driving, where the key is to predict how the ego car and the surroundings evolve given past scenes. We propose GenAD, a generative framework that casts autonomous driving into a generative modeling problem. We propose an instance-centric scene tokenizer that first transforms the surrounding scenes into map-aware instance tokens. We then employ a variational autoencoder to learn the future trajectory distribution in a structural latent space for trajectory prior modeling. We further adopt a temporal model to capture the agent and ego movements in the latent space to generate more effective future trajectories. GenAD finally simultaneously performs motion prediction and planning by sampling distributions in the learned structural latent space conditioned on the instance tokens and using the learned temporal model to generate futures. Extensive experiments on the widely used nuScenes benchmark show that the proposed GenAD achieves state-of-the-art performance on vision-centric end-to-end autonomous driving with high efficiency. Code: https://github.com/wzzheng/GenAD.
Related papers
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Driving in the Occupancy World: Vision-Centric 4D Occupancy Forecasting and Planning via World Models for Autonomous Driving [15.100104512786107]
Drive-OccWorld adapts a visioncentric- 4D forecasting world model to end-to-end planning for autonomous driving.
We propose injecting flexible action conditions, such as velocity, steering angle, trajectory, and commands, into the world model.
Experiments on the nuScenes dataset demonstrate that our method can generate plausible and controllable 4D occupancy.
arXiv Detail & Related papers (2024-08-26T11:53:09Z) - Enhancing End-to-End Autonomous Driving with Latent World Model [78.22157677787239]
We propose a novel self-supervised method to enhance end-to-end driving without the need for costly labels.
Our framework textbfLAW uses a LAtent World model to predict future latent features based on the predicted ego actions and the latent feature of the current frame.
As a result, our approach achieves state-of-the-art performance in both open-loop and closed-loop benchmarks without costly annotations.
arXiv Detail & Related papers (2024-06-12T17:59:21Z) - GenAD: Generalized Predictive Model for Autonomous Driving [75.39517472462089]
We introduce the first large-scale video prediction model in the autonomous driving discipline.
Our model, dubbed GenAD, handles the challenging dynamics in driving scenes with novel temporal reasoning blocks.
It can be adapted into an action-conditioned prediction model or a motion planner, holding great potential for real-world driving applications.
arXiv Detail & Related papers (2024-03-14T17:58:33Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WM is the first driving world model compatible with existing end-to-end planning models.
Our model generates high-fidelity multiview videos in driving scenes.
arXiv Detail & Related papers (2023-11-29T18:59:47Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - Smooth-Trajectron++: Augmenting the Trajectron++ behaviour prediction
model with smooth attention [0.0]
This work investigates the state-of-the-art trajectory forecasting model Trajectron++ which we enhance by incorporating a smoothing term in its attention module.
This attention mechanism mimics human attention inspired by cognitive science research indicating limits to attention switching.
We evaluate the performance of the resulting Smooth-Trajectron++ model and compare it to the original model on various benchmarks.
arXiv Detail & Related papers (2023-05-31T09:19:55Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation.
We present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents.
We demonstrate its performance on several challenging real-world trajectory forecasting datasets.
arXiv Detail & Related papers (2020-01-09T16:47:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.