論文の概要: Predicting Multi-Agent Specialization via Task Parallelizability
- arxiv url: http://arxiv.org/abs/2503.15703v1
- Date: Wed, 19 Mar 2025 21:33:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:33:38.956680
- Title: Predicting Multi-Agent Specialization via Task Parallelizability
- Title(参考訳): タスク並列化によるマルチエージェントスペシャライゼーションの予測
- Authors: Elizabeth Mieczkowski, Ruaridh Mon-Williams, Neil Bramley, Christopher G. Lucas, Natalia Velez, Thomas L. Griffiths,
- Abstract要約: 環境制約がタスクの並列性を制限する場合、スペシャリストチームはジェネラリストよりも優れていることを示す。
また、状態空間が拡大するにつれて、エージェントは理論上より効率的である場合でも、専門家戦略に収束する傾向にあることも観察する。
本研究は,タスクと環境に配慮した特殊化を解釈するための原則的枠組みを提供する。
- 参考スコア(独自算出の注目度): 4.9553580237478
- License:
- Abstract: Multi-agent systems often rely on specialized agents with distinct roles rather than general-purpose agents that perform the entire task independently. However, the conditions that govern the optimal degree of specialization remain poorly understood. In this work, we propose that specialist teams outperform generalist ones when environmental constraints limit task parallelizability -- the potential to execute task components concurrently. Drawing inspiration from distributed systems, we introduce a heuristic to predict the relative efficiency of generalist versus specialist teams by estimating the speed-up achieved when two agents perform a task in parallel rather than focus on complementary subtasks. We validate this heuristic through three multi-agent reinforcement learning (MARL) experiments in Overcooked-AI, demonstrating that key factors limiting task parallelizability influence specialization. We also observe that as the state space expands, agents tend to converge on specialist strategies, even when generalist ones are theoretically more efficient, highlighting potential biases in MARL training algorithms. Our findings provide a principled framework for interpreting specialization given the task and environment, and introduce a novel benchmark for evaluating whether MARL finds optimal strategies.
- Abstract(参考訳): マルチエージェントシステムはしばしば、タスク全体を独立して実行する汎用エージェントではなく、異なる役割を持つ特殊エージェントに依存している。
しかし、最適な専門化の度合いを規定する条件はいまだに理解されていない。
本研究では,環境制約によってタスクの並列化が制限された場合,タスクコンポーネントを同時に実行可能な場合には,スペシャリストチームがジェネラリストよりも優れたパフォーマンスを発揮することを提案する。
分散システムからインスピレーションを得て,2つのエージェントが相補的なサブタスクにフォーカスするのではなく,並列にタスクを実行する場合に達成されるスピードを推定することにより,ジェネラリストとスペシャリストの相対効率を推定するヒューリスティックを導入する。
我々は,Overcooked-AIにおける3つのマルチエージェント強化学習(MARL)実験を通して,このヒューリスティック性を検証し,タスクの並列化性を制限する重要な要因が特殊化に影響を及ぼすことを示した。
また、状態空間が拡大するにつれて、エージェントは、理論上より効率的であり、MARLトレーニングアルゴリズムの潜在的なバイアスを強調しても、専門的な戦略に収束する傾向にあることも観察した。
本研究は,タスクと環境から特殊化を解釈するための基本的枠組みを提供し,MARLが最適な戦略を見出すかどうかを評価するための新しいベンチマークを導入した。
関連論文リスト
- Towards more Contextual Agents: An extractor-Generator Optimization Framework [0.0]
LLM(Large Language Model)ベースのエージェントは、幅広い汎用アプリケーションにわたる複雑なタスクの解決に顕著な成功を収めている。
しかしながら、それらのパフォーマンスは、専門産業や研究領域のようなコンテキスト固有のシナリオで劣化することが多い。
この課題に対処するため,本研究では,LLMエージェントの文脈適応性を高めるための体系的アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-18T15:07:06Z) - Complexity Experts are Task-Discriminative Learners for Any Image Restoration [80.46313715427928]
複雑性の専門家" - 様々な計算複雑性と受容的なフィールドを持つフレキシブルな専門家ブロックを紹介します。
この選好は、タスク固有の割り当てを効果的に推進し、適切な複雑さを持つ専門家にタスクを割り当てる。
提案したMoCE-IRモデルは最先端の手法より優れており、その効率性と実用性が確認されている。
論文 参考訳(メタデータ) (2024-11-27T15:58:07Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - CoPS: Empowering LLM Agents with Provable Cross-Task Experience Sharing [70.25689961697523]
クロスタスク体験の共有と選択によるシーケンシャル推論を強化する一般化可能なアルゴリズムを提案する。
我々の研究は、既存のシーケンシャルな推論パラダイムのギャップを埋め、タスク間体験の活用の有効性を検証する。
論文 参考訳(メタデータ) (2024-10-22T03:59:53Z) - Inverse Reinforcement Learning with Sub-optimal Experts [56.553106680769474]
与えられた専門家の集合と互換性のある報酬関数のクラスの理論的性質について検討する。
以上の結果から,複数の準最適専門家の存在が,相反する報酬の集合を著しく減少させる可能性が示唆された。
我々は,最適なエージェントの1つに十分近い準最適専門家のパフォーマンスレベルが最適である場合に,最小限の最適化を行う一様サンプリングアルゴリズムを解析する。
論文 参考訳(メタデータ) (2024-01-08T12:39:25Z) - Harnessing Pre-trained Generalist Agents for Software Engineering Tasks [13.733085206098258]
深層強化学習(DRL)は、ゲームテストやジョブショップスケジューリング問題の解決といった複雑なタスクの自動化に成功している。
専門のDRLエージェントは、他のタスクへの一般化性の欠如に悩まされており、効果的に開発および再訓練するためのかなりの時間を必要としている。
近年、DRL研究者は、様々な環境からポリシーを学習し、新しいタスクにおけるスペシャリストと同等以上のパフォーマンスを達成できるジェネラリストエージェントの開発を開始している。
論文 参考訳(メタデータ) (2023-12-24T18:39:58Z) - ALMA: Hierarchical Learning for Composite Multi-Agent Tasks [21.556661319375255]
本稿では,構造化タスクを活用可能な汎用学習手法であるALMAを紹介する。
ALMAは高レベルのサブタスク割り当てポリシーと低レベルのエージェントポリシーを同時に学習する。
ALMAは様々な課題のある環境で高度な協調行動を学ぶことを実証する。
論文 参考訳(メタデータ) (2022-05-27T19:12:23Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
協調型MARLにおける動的サブタスク代入(LDSA)を学習するための新しいフレームワークを提案する。
エージェントを異なるサブタスクに合理的に割り当てるために,能力に基づくサブタスク選択戦略を提案する。
LDSAは、より優れたコラボレーションのために、合理的で効果的なサブタスクの割り当てを学習していることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:46:16Z) - Reward Machines for Cooperative Multi-Agent Reinforcement Learning [30.84689303706561]
協調型マルチエージェント強化学習において、エージェントの集合は共通の目標を達成するために共有環境で対話することを学ぶ。
本稿では、報酬関数の構造化表現として使われる単純な機械である報酬機械(RM)を用いて、チームのタスクを符号化する手法を提案する。
マルチエージェント設定におけるRMの新たな解釈は、要求されるチームメイト相互依存性を明示的に符号化し、チームレベルのタスクを個々のエージェントのサブタスクに分解することを可能にする。
論文 参考訳(メタデータ) (2020-07-03T23:08:14Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
実世界のマルチエージェント設定は、エージェントや非エージェントエンティティのタイプや量が異なるタスクを伴うことが多い。
我々の方法は、これらの共通点を活用することを目的としており、「観察対象のランダムに選択されたサブグループのみを考えるとき、各エージェントが期待する効用は何か?」という問いを投げかける。
論文 参考訳(メタデータ) (2020-06-07T18:28:41Z) - Individual specialization in multi-task environments with multiagent
reinforcement learners [0.0]
汎用知的エージェント構築の第一歩として,マルチエージェント強化学習(MARL)への関心が高まっている。
以前の結果は、調整、効率/公平性、共有プールリソース共有の条件の増大を示唆している。
マルチタスク環境において、複数の報奨タスクを実行できるため、エージェントは必ずしも全てのタスクでうまく機能する必要はないが、特定の条件下では特殊化される可能性がある。
論文 参考訳(メタデータ) (2019-12-29T15:20:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。