論文の概要: Graph-Weighted Contrastive Learning for Semi-Supervised Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2503.15731v1
- Date: Wed, 19 Mar 2025 22:55:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:34:15.901738
- Title: Graph-Weighted Contrastive Learning for Semi-Supervised Hyperspectral Image Classification
- Title(参考訳): 半スーパービジョンハイパースペクトル画像分類のためのグラフ重み付きコントラスト学習
- Authors: Yuqing Zhang, Qi Han, Ligeng Wang, Kai Cheng, Bo Wang, Kun Zhan,
- Abstract要約: 本稿では,超画素分割を回避し,ニューラルネットワークを用いてハイパースペクトル画像表現を学習するグラフ重み付きコントラスト学習手法を提案する。
提案手法は,ノードのサブセットのみを一度に処理することで,計算複雑性を低減し,未確認ノードへの一般化を改善することによるミニバッチトレーニングを支援する。
- 参考スコア(独自算出の注目度): 9.640130509216629
- License:
- Abstract: Most existing graph-based semi-supervised hyperspectral image classification methods rely on superpixel partitioning techniques. However, they suffer from misclassification of certain pixels due to inaccuracies in superpixel boundaries, \ie, the initial inaccuracies in superpixel partitioning limit overall classification performance. In this paper, we propose a novel graph-weighted contrastive learning approach that avoids the use of superpixel partitioning and directly employs neural networks to learn hyperspectral image representation. Furthermore, while many approaches require all graph nodes to be available during training, our approach supports mini-batch training by processing only a subset of nodes at a time, reducing computational complexity and improving generalization to unseen nodes. Experimental results on three widely-used datasets demonstrate the effectiveness of the proposed approach compared to baselines relying on superpixel partitioning.
- Abstract(参考訳): 既存のグラフベースの半教師付きハイパースペクトル画像分類法の多くは、スーパーピクセル分割技術に依存している。
しかし、超画素境界における不正確さ、すなわち超画素分割における初期不正確さによって、全体分類性能が制限されるため、特定の画素の誤分類に悩まされる。
本稿では,超画素分割を回避し,ニューラルネットワークを直接利用してハイパースペクトル画像表現を学習する,グラフ重み付きコントラスト学習手法を提案する。
さらに、訓練中に全てのグラフノードを利用できるようにする必要があるが、我々のアプローチは、ノードのサブセットのみを一度に処理し、計算の複雑さを減らし、未確認ノードへの一般化を改善することで、ミニバッチトレーニングをサポートする。
広範に使用されている3つのデータセットの実験結果から,スーパーピクセル分割に依存するベースラインと比較して,提案手法の有効性が示された。
関連論文リスト
- Hierarchical Superpixel Segmentation via Structural Information Theory [48.488598357738674]
スーパーピクセルセグメンテーションは多くの高レベルのコンピュータビジョンタスクの基礎となっている。
構造情報理論に基づく階層的スーパーピクセルセグメンテーション手法であるSIT-HSSを提案する。
SIT-HSSは、最先端の教師なしスーパーピクセルセグメンテーションアルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2025-01-13T05:39:43Z) - Exploring Multi-view Pixel Contrast for General and Robust Image Forgery Localization [4.8454936010479335]
本稿では,画像フォージェリーローカライゼーションのための多視点Pixel-wise Contrastive Algorithm (MPC)を提案する。
具体的には、まず、教師付きコントラスト損失を伴うバックボーンネットワークを事前訓練する。
次に、クロスエントロピー損失を用いてローカライゼーションヘッドを微調整し、ピクセルローカライザを改良する。
論文 参考訳(メタデータ) (2024-06-19T13:51:52Z) - Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
ハイパースペクトル画像(HSI)クラスタリングは重要な課題だが難しい課題である。
まず3次元と2次元のハイブリッド畳み込みニューラルネットワークを用いてHSIの高次空間およびスペクトルの特徴を抽出する。
次に,超画素グラフの対比クラスタリングモデルを設計し,識別的超画素表現を学習する。
論文 参考訳(メタデータ) (2024-03-04T07:40:55Z) - Pixel-Level Clustering Network for Unsupervised Image Segmentation [3.69853388955692]
画像の領域分割のためのピクセルレベルのクラスタリングフレームワークを,地上の真理アノテーションを使わずに提案する。
また、各スーパーピクセル間の一貫性、隣接するスーパーピクセル間の相似性/相似性、画像間の構造的類似性を利用したトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-10-24T23:06:29Z) - Pixel Relationships-based Regularizer for Retinal Vessel Image
Segmentation [4.3251090426112695]
本研究は, 正則化器を用いて, 学習プロセスに画素近傍の関係情報を付与する。
実験により,提案手法は画素近傍関係の捕捉に成功し,畳み込みニューラルネットワークの性能向上を図っている。
論文 参考訳(メタデータ) (2022-12-28T07:35:20Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
本稿では,ハイパースペクトル画像分類のための確率論的深度学習フレームワークを提案する。
ハイパースペクトルセンサーが捉えた画像に対して、各ピクセルのカテゴリを予測することを目的としている。
我々のフレームワークは、既存のハイパースペクトル画像分類法に容易に適用できる。
論文 参考訳(メタデータ) (2022-11-15T17:57:12Z) - Adaptive Fusion Affinity Graph with Noise-free Online Low-rank
Representation for Natural Image Segmentation [3.7189024338041836]
本稿では,自然画像分割のための適応アフィニティ融合グラフ(AFAグラフ)を提案する。
BSD300、BSD500、MSRC、PASCAL VOCの実験結果は、最先端のアプローチと比較してAFAグラフの有効性を示している。
論文 参考訳(メタデータ) (2021-10-22T10:15:27Z) - Mixed Supervision Learning for Whole Slide Image Classification [88.31842052998319]
超高解像度画像のための混合監視学習フレームワークを提案する。
パッチトレーニングの段階では、このフレームワークは、粗いイメージレベルのラベルを使用して、自己教師付き学習を洗練することができる。
画素レベルの偽陽性と偽陰性を抑制するための包括的な戦略が提案されている。
論文 参考訳(メタデータ) (2021-07-02T09:46:06Z) - Semi-supervised Hyperspectral Image Classification with Graph Clustering
Convolutional Networks [41.78245271989529]
HSI分類のためのグラフ畳み込みネットワーク(GCN)に基づくフレームワークを提案する。
特に、類似のスペクトル特徴を持つ画素をスーパーピクセルにまずクラスターし、入力したhsiのスーパーピクセルに基づいてグラフを構築する。
その後、エッジを弱い重みで刻むことでいくつかの部分グラフに分割し、高い類似性を持つノードの相関性を強化する。
論文 参考訳(メタデータ) (2020-12-20T14:16:59Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
独立意味情報を持つ各代表領域を部分空間とみなし,部分空間クラスタリング問題としてスーパーピクセルセグメンテーションを定式化する。
従来のサブスペースクラスタリングとスーパーピクセルセグメンテーションの簡単な統合は,画素の空間相関のために効果的に機能しないことを示す。
本稿では,空間隣接画素に類似の属性を付加してスーパーピクセルにクラスタリング可能な,凸局所性制約付きサブスペースクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2020-12-11T06:18:36Z) - Contrastive Rendering for Ultrasound Image Segmentation [59.23915581079123]
米国の画像にシャープな境界がないことは、セグメンテーションに固有の課題である。
我々は,US画像における境界推定を改善するための,新しい,効果的なフレームワークを提案する。
提案手法は最先端の手法より優れており,臨床応用の可能性も高い。
論文 参考訳(メタデータ) (2020-10-10T07:14:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。