Frequency Enhancement for Image Demosaicking
- URL: http://arxiv.org/abs/2503.15800v1
- Date: Thu, 20 Mar 2025 02:37:10 GMT
- Title: Frequency Enhancement for Image Demosaicking
- Authors: Jingyun Liu, Daiqin Yang, Zhenzhong Chen,
- Abstract summary: We propose Dual-path Frequency Enhancement Network (DFENet), which reconstructs RGB images in a divide-and-conquer manner.<n>One path focuses on generating missing information through detail refinement in spatial domain, while the other aims at suppressing undesirable frequencies.<n>With these designs, the proposed DFENet outperforms other state-of-the-art algorithms on different datasets.
- Score: 40.76899837631637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recovering high-frequency textures in image demosaicking remains a challenging issue. While existing methods introduced elaborate spatial learning methods, they still exhibit limited performance. To address this issue, a frequency enhancement approach is proposed. Based on the frequency analysis of color filter array (CFA)/demosaicked/ground truth images, we propose Dual-path Frequency Enhancement Network (DFENet), which reconstructs RGB images in a divide-and-conquer manner through fourier-domain frequency selection. In DFENet, two frequency selectors are employed, each selecting a set of frequency components for processing along separate paths. One path focuses on generating missing information through detail refinement in spatial domain, while the other aims at suppressing undesirable frequencies with the guidance of CFA images in frequency domain. Multi-level frequency supervision with a stagewise training strategy is employed to further improve the reconstruction performance. With these designs, the proposed DFENet outperforms other state-of-the-art algorithms on different datasets and demonstrates significant advantages on hard cases. Moreover, to better assess algorithms' ability to reconstruct high-frequency textures, a new dataset, LineSet37, is contributed, which consists of 37 artificially designed and generated images. These images feature complex line patterns and are prone to severe visual artifacts like color moir\'e after demosaicking. Experiments on LineSet37 offer a more targeted evaluation of performance on challenging cases. The code and dataset are available at https://github.com/VelvetReverie/DFENet-demosaicking.
Related papers
- Sharpening Neural Implicit Functions with Frequency Consolidation Priors [53.6277160912059]
Signed Distance Functions (SDFs) are vital implicit representations to represent high fidelity 3D surfaces.<n>Current methods mainly leverage a neural network to learn an SDF from various supervisions including signed, 3D point clouds, or multi-view images.<n>We introduce a method to sharpen a low frequency SDF observation by recovering its high frequency components, pursuing a sharper and more complete surface.
arXiv Detail & Related papers (2024-12-27T16:18:46Z) - Multi-scale Frequency Enhancement Network for Blind Image Deblurring [7.198959621445282]
We propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring.
To capture the multi-scale spatial and channel information of blurred images, we introduce a multi-scale feature extraction module (MS-FE) based on depthwise separable convolutions.
We demonstrate that the proposed method achieves superior deblurring performance in both visual quality and objective evaluation metrics.
arXiv Detail & Related papers (2024-11-11T11:49:18Z) - Both Spatial and Frequency Cues Contribute to High-Fidelity Image
Inpainting [9.080472817672263]
Deep generative approaches have obtained great success in image inpainting recently.
Most generative inpainting networks suffer from either over-smooth results or aliasing artifacts.
We propose an effective Frequency-Spatial Complementary Network (FSCN) by exploiting rich semantic information in both spatial and frequency domains.
arXiv Detail & Related papers (2023-07-15T01:52:06Z) - Spatial-Temporal Frequency Forgery Clue for Video Forgery Detection in
VIS and NIR Scenario [87.72258480670627]
Existing face forgery detection methods based on frequency domain find that the GAN forged images have obvious grid-like visual artifacts in the frequency spectrum compared to the real images.
This paper proposes a Cosine Transform-based Forgery Clue Augmentation Network (FCAN-DCT) to achieve a more comprehensive spatial-temporal feature representation.
arXiv Detail & Related papers (2022-07-05T09:27:53Z) - Multi-scale frequency separation network for image deblurring [10.511076996096117]
We present a new method called multi-scale frequency separation network (MSFS-Net) for image deblurring.
MSFS-Net captures the low and high-frequency information of image at multiple scales.
Experiments on benchmark datasets show that the proposed network achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-06-01T23:48:35Z) - TBNet:Two-Stream Boundary-aware Network for Generic Image Manipulation
Localization [49.521622399483846]
We propose a novel end-to-end two-stream boundary-aware network (abbreviated as TBNet) for generic image manipulation localization.
The proposed TBNet can significantly outperform state-of-the-art generic image manipulation localization methods in terms of both MCC and F1.
arXiv Detail & Related papers (2021-08-10T08:22:05Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z) - WaveFill: A Wavelet-based Generation Network for Image Inpainting [57.012173791320855]
WaveFill is a wavelet-based inpainting network that decomposes images into multiple frequency bands.
WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally.
It applies L1 reconstruction loss to the low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts.
arXiv Detail & Related papers (2021-07-23T04:44:40Z) - Image inpainting using frequency domain priors [35.54138025375951]
We present a novel image inpainting technique using frequency domain information.
We evaluate our proposed method on the publicly available datasets CelebA, Paris Streetview, and DTD texture dataset.
arXiv Detail & Related papers (2020-12-03T11:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.