論文の概要: Enhancing Zero-Shot Image Recognition in Vision-Language Models through Human-like Concept Guidance
- arxiv url: http://arxiv.org/abs/2503.15886v2
- Date: Fri, 21 Mar 2025 02:55:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 11:33:53.442648
- Title: Enhancing Zero-Shot Image Recognition in Vision-Language Models through Human-like Concept Guidance
- Title(参考訳): ヒューマンライクな概念誘導による視覚言語モデルにおけるゼロショット画像認識の強化
- Authors: Hui Liu, Wenya Wang, Kecheng Chen, Jie Liu, Yibing Liu, Tiexin Qin, Peisong He, Xinghao Jiang, Haoliang Li,
- Abstract要約: ゼロショット画像認識タスクでは、人間は目に見えないカテゴリを分類する際、顕著な柔軟性を示す。
既存の視覚言語モデルは、しばしば準最適プロンプトエンジニアリングのため、現実世界のアプリケーションでは性能が劣る。
これらの問題に対処するために,概念誘導型人間ライクなベイズ推論フレームワークを提案する。
- 参考スコア(独自算出の注目度): 41.6755826072905
- License:
- Abstract: In zero-shot image recognition tasks, humans demonstrate remarkable flexibility in classifying unseen categories by composing known simpler concepts. However, existing vision-language models (VLMs), despite achieving significant progress through large-scale natural language supervision, often underperform in real-world applications because of sub-optimal prompt engineering and the inability to adapt effectively to target classes. To address these issues, we propose a Concept-guided Human-like Bayesian Reasoning (CHBR) framework. Grounded in Bayes' theorem, CHBR models the concept used in human image recognition as latent variables and formulates this task by summing across potential concepts, weighted by a prior distribution and a likelihood function. To tackle the intractable computation over an infinite concept space, we introduce an importance sampling algorithm that iteratively prompts large language models (LLMs) to generate discriminative concepts, emphasizing inter-class differences. We further propose three heuristic approaches involving Average Likelihood, Confidence Likelihood, and Test Time Augmentation (TTA) Likelihood, which dynamically refine the combination of concepts based on the test image. Extensive evaluations across fifteen datasets demonstrate that CHBR consistently outperforms existing state-of-the-art zero-shot generalization methods.
- Abstract(参考訳): ゼロショット画像認識タスクでは、人間は既知の単純な概念を構成することで、目に見えないカテゴリを分類する際、顕著な柔軟性を示す。
しかしながら、既存の視覚言語モデル(VLM)は、大規模な自然言語の監督によって大きな進歩を遂げたにもかかわらず、しばしば準最適プロンプトエンジニアリングとターゲットクラスに効果的に適応できないため、現実世界のアプリケーションでは性能が劣っている。
これらの課題に対処するために,概念誘導型Human-like Bayesian Reasoning (CHBR) フレームワークを提案する。
ベイズの定理に基づいて、CHBRは人間の画像認識で使われる概念を潜在変数としてモデル化し、事前分布と可能性関数によって重み付けされた潜在的概念をまとめてこのタスクを定式化する。
無限概念空間上での難解な計算に対処するため,クラス間差を強調しながら,大規模言語モデル (LLM) を反復的に生成する重要サンプリングアルゴリズムを導入する。
さらに,テスト画像に基づく概念の組み合わせを動的に洗練する,平均的・信頼的・信頼的・テスト時間拡張(TTA)的3つのヒューリスティックなアプローチを提案する。
15のデータセットにわたる広範囲な評価は、CHBRが既存の最先端のゼロショット一般化手法を一貫して上回っていることを示している。
関連論文リスト
- On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [49.60774626839712]
マルチモーダル生成モデルは 彼らの公正さ、信頼性、そして誤用の可能性について 批判的な議論を呼んだ
組込み空間における摂動に対する応答を通じてモデルの信頼性を評価するための評価フレームワークを提案する。
本手法は, 信頼できない, バイアス注入されたモデルを検出し, バイアス前駆体の検索を行うための基礎となる。
論文 参考訳(メタデータ) (2024-11-21T09:46:55Z) - Explainable Concept Generation through Vision-Language Preference Learning [7.736445799116692]
概念に基づく説明は、ポストホック後のディープニューラルネットワークを説明するための一般的な選択肢となっている。
視覚言語生成モデルを微調整する強化学習に基づく選好最適化アルゴリズムを考案する。
提案手法の有効性と信頼性に加えて,ニューラルネットワーク解析の診断ツールとしての有用性を示す。
論文 参考訳(メタデータ) (2024-08-24T02:26:42Z) - Distilling Vision-Language Foundation Models: A Data-Free Approach via Prompt Diversification [49.41632476658246]
我々は、数十億レベルの画像テキストデータセットにアクセスすることなく、DFKDをVision-Language Foundation Modelsに拡張することについて議論する。
目的は,配当に依存しないダウンストリームタスクに対して,与えられたカテゴリ概念を学生モデルにカスタマイズすることである。
本稿では,多様なスタイルで画像合成を促進するために,3つの新しいプロンプト分岐法を提案する。
論文 参考訳(メタデータ) (2024-07-21T13:26:30Z) - Restyling Unsupervised Concept Based Interpretable Networks with Generative Models [14.604305230535026]
本稿では,事前学習された生成モデルの潜在空間に概念特徴をマッピングすることに依存する新しい手法を提案する。
本手法の有効性を,解釈可能な予測ネットワークの精度,再現性,学習概念の忠実性,一貫性の観点から定量的に検証した。
論文 参考訳(メタデータ) (2024-07-01T14:39:41Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
本稿では,豊富な生成前駆体を含む事前学習型安定拡散(SD)モデルと,階層的表現を統合可能な統一型ヘッド(Uヘッド)と,識別前駆体を提供する適応型専門家からなる,シンプルで効果的なフレームワークを提案する。
包括的調査では、異なる時間ステップで潜伏変数に隠された知覚の粒度や様々なU-netステージなど、バーマスの潜在的な特性が明らかになった。
有望な結果は,有望な学習者としての拡散モデルの可能性を示し,情報的かつ堅牢な視覚表現の確立にその意義を定めている。
論文 参考訳(メタデータ) (2024-01-29T10:36:57Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
本稿では,視覚的分類タスクにおけるモデル解釈可能性と性能を向上させるための新しい概念学習フレームワークを提案する。
本手法では, 教師なし説明生成器を一次分類器ネットワークに付加し, 対角訓練を利用する。
この研究は、タスク整合概念表現を用いた本質的に解釈可能なディープビジョンモデルを構築するための重要なステップを示す。
論文 参考訳(メタデータ) (2024-01-09T16:16:16Z) - CEIR: Concept-based Explainable Image Representation Learning [0.4198865250277024]
本稿では,概念に基づく説明可能な画像表現(CEIR)を導入し,ラベルに依存しない高品質な表現を導出する。
提案手法は, CIFAR10, CIFAR100, STL10などのベンチマーク上で, 最先端の非教師付きクラスタリング性能を示す。
CEIRは、微調整なしで、オープンワールドイメージから関連概念をシームレスに抽出することができる。
論文 参考訳(メタデータ) (2023-12-17T15:37:41Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。