LeanTTA: A Backpropagation-Free and Stateless Approach to Quantized Test-Time Adaptation on Edge Devices
- URL: http://arxiv.org/abs/2503.15889v1
- Date: Thu, 20 Mar 2025 06:27:09 GMT
- Title: LeanTTA: A Backpropagation-Free and Stateless Approach to Quantized Test-Time Adaptation on Edge Devices
- Authors: Cynthia Dong, Hong Jia, Young D. Kwon, Georgios Rizos, Cecilia Mascolo,
- Abstract summary: We present LeanTTA, a novel backpropagation-free and stateless framework for quantized test-time adaptation tailored to edge devices.<n>Our approach minimizes computational costs by dynamically updating normalization statistics without backpropagation.<n>We validate our framework across sensor modalities, demonstrating significant improvements over state-of-the-art TTA methods.
- Score: 13.355021314836852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While there are many advantages to deploying machine learning models on edge devices, the resource constraints of mobile platforms, the dynamic nature of the environment, and differences between the distribution of training versus in-the-wild data make such deployments challenging. Current test-time adaptation methods are often memory-intensive and not designed to be quantization-compatible or deployed on low-resource devices. To address these challenges, we present LeanTTA, a novel backpropagation-free and stateless framework for quantized test-time adaptation tailored to edge devices. Our approach minimizes computational costs by dynamically updating normalization statistics without backpropagation, which frees LeanTTA from the common pitfall of relying on large batches and historical data, making our method robust to realistic deployment scenarios. Our approach is the first to enable further computational gains by combining partial adaptation with quantized module fusion. We validate our framework across sensor modalities, demonstrating significant improvements over state-of-the-art TTA methods, including a 15.7% error reduction, peak memory usage of only 11.2MB for ResNet18, and fast adaptation within an order-of-magnitude of normal inference speeds on-device. LeanTTA provides a robust solution for achieving the right trade offs between accuracy and system efficiency in edge deployments, addressing the unique challenges posed by limited data and varied operational conditions.
Related papers
- SURGEON: Memory-Adaptive Fully Test-Time Adaptation via Dynamic Activation Sparsity [30.260783715373382]
Test-time adaptation (TTA) has emerged to improve the performance of deep models by adapting them to unlabeled target data online.
Yet, the significant memory cost, particularly in resource-constrained terminals, impedes the effective deployment of most backward-propagation-based TTA methods.
To tackle memory constraints, we introduce SURGEON, a method that substantially reduces memory cost while preserving comparable accuracy improvements.
arXiv Detail & Related papers (2025-03-26T09:27:09Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
Test-time adaptation has proven effective in adapting a given trained model to unseen test samples with potential distribution shifts.
We propose a test-time Forward-Optimization Adaptation (FOA) method.
FOA runs on quantized 8-bit ViT, outperforms gradient-based TENT on full-precision 32-bit ViT, and achieves an up to 24-fold memory reduction on ImageNet-C.
arXiv Detail & Related papers (2024-04-02T05:34:33Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - REALM: Robust Entropy Adaptive Loss Minimization for Improved
Single-Sample Test-Time Adaptation [5.749155230209001]
Fully-test-time adaptation (F-TTA) can mitigate performance loss due to distribution shifts between train and test data.
We present a general framework for improving robustness of F-TTA to noisy samples, inspired by self-paced learning and robust loss functions.
arXiv Detail & Related papers (2023-09-07T18:44:58Z) - AQUILA: Communication Efficient Federated Learning with Adaptive
Quantization in Device Selection Strategy [27.443439653087662]
This paper introduces AQUILA (adaptive quantization in device selection strategy), a novel adaptive framework devised to handle these issues.
AQUILA integrates a sophisticated device selection method that prioritizes the quality and usefulness of device updates.
Our experiments demonstrate that AQUILA significantly decreases communication costs compared to existing methods.
arXiv Detail & Related papers (2023-08-01T03:41:47Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Distributed Learning in Heterogeneous Environment: federated learning
with adaptive aggregation and computation reduction [37.217844795181975]
heterogeneous data, time-varying wireless conditions and computing-limited devices are three main challenges.
We propose strategies to address these challenges.
The proposed framework can tolerate communication delay of up to 15 rounds under a moderate delay environment.
arXiv Detail & Related papers (2023-02-16T16:32:54Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
We introduce a new sparsity dimension, namely pattern-based sparsity that comprises pattern and connectivity sparsity, and becoming both highly accurate and hardware friendly.
Our approach on the new pattern-based sparsity naturally fits into compiler optimization for highly efficient DNN execution on mobile platforms.
arXiv Detail & Related papers (2020-01-20T16:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.