論文の概要: DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables
- arxiv url: http://arxiv.org/abs/2503.15931v1
- Date: Thu, 20 Mar 2025 08:15:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:34:01.006489
- Title: DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables
- Title(参考訳): DnLUT:チャンネルを意識したルックアップテーブルで色を識別する超効率的なカラー画像
- Authors: Sidi Yang, Binxiao Huang, Yulun Zhang, Dahai Yu, Yujiu Yang, Ngai Wong,
- Abstract要約: DnLUTは、リソース消費を最小限に抑えながら高品質なカラーイメージを実現する、超効率的なルックアップテーブルベースのフレームワークである。
Pairwise Channel Mixer(PCM)は、チャネル間の相関関係と空間的依存関係を並列に効果的にキャプチャし、L字型畳み込み設計により受容界のカバレッジを最大化する。
これらのコンポーネントをトレーニング後に最適化されたルックアップテーブルに変換することで、DnLUTは、CNNの競合であるDnCNNと比較して500KBのストレージと0.1%のエネルギー消費しか必要とせず、20倍高速な推論を実現している。
- 参考スコア(独自算出の注目度): 60.95483707212802
- License:
- Abstract: While deep neural networks have revolutionized image denoising capabilities, their deployment on edge devices remains challenging due to substantial computational and memory requirements. To this end, we present DnLUT, an ultra-efficient lookup table-based framework that achieves high-quality color image denoising with minimal resource consumption. Our key innovation lies in two complementary components: a Pairwise Channel Mixer (PCM) that effectively captures inter-channel correlations and spatial dependencies in parallel, and a novel L-shaped convolution design that maximizes receptive field coverage while minimizing storage overhead. By converting these components into optimized lookup tables post-training, DnLUT achieves remarkable efficiency - requiring only 500KB storage and 0.1% energy consumption compared to its CNN contestant DnCNN, while delivering 20X faster inference. Extensive experiments demonstrate that DnLUT outperforms all existing LUT-based methods by over 1dB in PSNR, establishing a new state-of-the-art in resource-efficient color image denoising. The project is available at https://github.com/Stephen0808/DnLUT.
- Abstract(参考訳): ディープニューラルネットワークは、画像の復調能力に革命をもたらしたが、エッジデバイスへの展開は、相当な計算とメモリ要件のため、依然として困難である。
そこで,DnLUTを提案する。DnLUTは,資源消費を最小限に抑えた高品質なカラー画像を実現する,高効率なルックアップテーブルベースのフレームワークである。
Pairwise Channel Mixer(PCM)は、チャネル間の相関関係と空間依存性を並列に効果的にキャプチャし、L字型畳み込み設計は、ストレージオーバーヘッドを最小化しながら、受容界のカバレッジを最大化する。
これらのコンポーネントをトレーニング後に最適化されたルックアップテーブルに変換することで、DnLUTは、CNNの競合であるDnCNNと比較して500KBのストレージと0.1%のエネルギー消費しか必要とせず、20倍高速な推論を実現している。
大規模な実験により、DnLUTは既存のLUTベースの手法をPSNRで1dB以上上回る性能を示し、資源効率の良いカラー画像の新たな最先端性を確立した。
このプロジェクトはhttps://github.com/Stephen0808/DnLUT.comで入手できる。
関連論文リスト
- Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity [39.483346492111515]
線形リカレントニューラルネットワークは、推論中に一定のメモリ使用量と時間毎の時間を含む強力な長距離シーケンスモデリングを可能にする。
非構造化空間は、互換性のあるハードウェアプラットフォームによって加速されるときに、計算とメモリの要求を大幅に削減できる魅力的なソリューションを提供する。
非常に疎い線形RNNは、高密度ベースラインよりも高い効率と性能のトレードオフを一貫して達成している。
論文 参考訳(メタデータ) (2025-02-03T13:09:21Z) - Faster Image2Video Generation: A Closer Look at CLIP Image Embedding's Impact on Spatio-Temporal Cross-Attentions [27.111140222002653]
本稿では,Stable Video Diffusion (SVD) フレームワークにおけるCLIP画像埋め込みの役割について検討する。
本稿では,SVDアーキテクチャの効率性に最適化されたトレーニング不要のアプローチであるVCUTを紹介する。
VCUTの実装により、ビデオ毎のMAC(Multiple-Accumulate Operations)を最大322T削減し、モデルパラメータを最大50M削減し、ベースラインと比較して20%のレイテンシ削減を実現した。
論文 参考訳(メタデータ) (2024-07-27T08:21:14Z) - Taming Lookup Tables for Efficient Image Retouching [30.48643578900116]
我々は、畳み込みニューラルネットワーク(CNN)を使わずに、極めて効率的なエッジ推論にLUTを採用するICELUTを提案する。
ICELUTは最先端の性能と極めて低消費電力を実現している。
これにより、最初のLUTベースのイメージエンハンサーであるICELUTは、GPUでは0.4ms、CPUでは7msという前例のない速度に達し、CNNソリューションよりも少なくとも1桁高速になる。
論文 参考訳(メタデータ) (2024-03-28T08:49:35Z) - Toward DNN of LUTs: Learning Efficient Image Restoration with Multiple
Look-Up Tables [47.15181829317732]
エッジデバイス上の高解像度スクリーンは、効率的な画像復元アルゴリズムに対する強い需要を刺激する。
単一のルックアップテーブルのサイズはインデックス化能力の増加とともに指数関数的に増加する。
本稿では,Mulutと呼ばれるニューラルネットワークのような複数のLUTを構築するための普遍的手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T16:00:33Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
深部畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)は、正確な構造情報を自動マイニングすることで、画像の復調に使用される。
動的畳み込みブロック(DCB)、2つのカスケードウェーブレット変換および拡張ブロック(WEB)、残留ブロック(RB)の3段階を経由した、MWDCNNによるCNNの多段階化を提案する。
論文 参考訳(メタデータ) (2022-09-26T03:28:23Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
品質を犠牲にすることなく、より小さなネットワークを使用できる汎用的な新しい入力符号化を提案する。
小さなニューラルネットワークは、勾配降下によって値が最適化された訓練可能な特徴ベクトルの多分解能ハッシュテーブルによって拡張される。
数桁の高速化を実現し、高品質なニューラルネットワークプリミティブを数秒でトレーニングすることができる。
論文 参考訳(メタデータ) (2022-01-16T07:22:47Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
深層畳み込みニューラルネットワーク(CNN)は、過去5年間で低レベルビジョンに広く適用されています。
画像超解像のための非対称ブロック(AB)、mem?ory拡張ブロック(MEB)、高周波数特徴強調ブロック(HFFEB)からなる非対称CNN(ACNet)を提案する。
我々のACNetは、ブラインドノイズの単一画像超解像(SISR)、ブラインドSISR、ブラインドSISRを効果的に処理できる。
論文 参考訳(メタデータ) (2021-03-25T07:10:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。