論文の概要: STOP: Integrated Spatial-Temporal Dynamic Prompting for Video Understanding
- arxiv url: http://arxiv.org/abs/2503.15973v1
- Date: Thu, 20 Mar 2025 09:16:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:33:57.972080
- Title: STOP: Integrated Spatial-Temporal Dynamic Prompting for Video Understanding
- Title(参考訳): STOP:映像理解のための統合空間時間動的プロンプティング
- Authors: Zichen Liu, Kunlun Xu, Bing Su, Xu Zou, Yuxin Peng, Jiahuan Zhou,
- Abstract要約: 本稿では,STOP(Spatial-Temporal dynamic Prompting)モデルを提案する。
2つの相補的なモジュールで構成され、フレーム内の空間的プロンプトとフレーム間の時間的プロンプトである。
STOPは、最先端のメソッドに対して一貫して優れたパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 48.12128042470839
- License:
- Abstract: Pre-trained on tremendous image-text pairs, vision-language models like CLIP have demonstrated promising zero-shot generalization across numerous image-based tasks. However, extending these capabilities to video tasks remains challenging due to limited labeled video data and high training costs. Recent video prompting methods attempt to adapt CLIP for video tasks by introducing learnable prompts, but they typically rely on a single static prompt for all video sequences, overlooking the diverse temporal dynamics and spatial variations that exist across frames. This limitation significantly hinders the model's ability to capture essential temporal information for effective video understanding. To address this, we propose an integrated Spatial-TempOral dynamic Prompting (STOP) model which consists of two complementary modules, the intra-frame spatial prompting and inter-frame temporal prompting. Our intra-frame spatial prompts are designed to adaptively highlight discriminative regions within each frame by leveraging intra-frame attention and temporal variation, allowing the model to focus on areas with substantial temporal dynamics and capture fine-grained spatial details. Additionally, to highlight the varying importance of frames for video understanding, we further introduce inter-frame temporal prompts, dynamically inserting prompts between frames with high temporal variance as measured by frame similarity. This enables the model to prioritize key frames and enhances its capacity to understand temporal dependencies across sequences. Extensive experiments on various video benchmarks demonstrate that STOP consistently achieves superior performance against state-of-the-art methods. The code is available at https://github.com/zhoujiahuan1991/CVPR2025-STOP.
- Abstract(参考訳): 膨大な画像テキストペアに基づいて事前トレーニングされたCLIPのようなビジョン言語モデルは、多数の画像ベースのタスクに対して、ゼロショットの一般化を約束することを示した。
しかし、ラベル付きビデオデータと高いトレーニングコストのため、これらの機能をビデオタスクに拡張することは依然として困難である。
最近のビデオプロンプト法は、学習可能なプロンプトを導入して、CLIPをビデオタスクに適用しようとするが、通常は、フレームにまたがる多様な時間的ダイナミクスと空間的変動を見越して、すべてのビデオシーケンスに対して単一の静的プロンプトに依存する。
この制限は、効果的なビデオ理解のために重要な時間情報を捕捉するモデルの能力を著しく阻害する。
そこで本研究では,フレーム内空間プロンプトとフレーム間時間プロンプトという2つの相補的なモジュールで構成される,空間-テンポラル動的プロンプト(STOP)モデルを提案する。
フレーム内の空間的プロンプトはフレーム内の注意と時間的変動を利用して各フレーム内の識別領域を適応的に強調するように設計されており、時間的変動がかなり大きい領域に焦点を合わせ、きめ細かい空間的詳細を捉えることができる。
さらに,映像理解におけるフレームの重要性の多様性を強調するために,フレーム間の時間差が大きいフレーム間でのプロンプトを動的に挿入するフレーム間プロンプトを導入する。
これにより、モデルがキーフレームを優先順位付けし、シーケンス間の時間的依存関係を理解する能力を高めることができる。
様々なビデオベンチマークによる大規模な実験により、STOPは最先端の手法に対して一貫して優れた性能を発揮することが示された。
コードはhttps://github.com/zhoujiahuan 1991/CVPR2025-STOPで公開されている。
関連論文リスト
- Temporal Contrastive Learning for Video Temporal Reasoning in Large Vision-Language Models [44.99833362998488]
TSADP(Temporal Semantic Alignment via Dynamic Prompting)は、時間的推論能力を高める新しいフレームワークである。
VidSitu データセット上での TSADP の評価を行った。
我々の分析は、TSADPの堅牢性、効率性、実用性を強調し、ビデオ言語理解の分野における一歩を踏み出した。
論文 参考訳(メタデータ) (2024-12-16T02:37:58Z) - FancyVideo: Towards Dynamic and Consistent Video Generation via Cross-frame Textual Guidance [47.88160253507823]
我々は、既存のテキスト制御機構を改善する革新的なビデオジェネレータであるFancyVideoを紹介した。
CTGMは、TII(Temporal Information)、TAR(Temporal Affinity Refiner)、TFB(Temporal Feature Booster)をクロスアテンションの開始、中、末に組み込んでいる。
論文 参考訳(メタデータ) (2024-08-15T14:47:44Z) - FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation [85.29772293776395]
フレーム間対応とフレーム間対応のFRESCOを導入し,より堅牢な時空間制約を確立する。
この拡張により、フレーム間で意味的に類似したコンテンツのより一貫性のある変換が可能になる。
提案手法では,入力ビデオと高空間時間整合性を実現するために,特徴の明示的な更新を行う。
論文 参考訳(メタデータ) (2024-03-19T17:59:18Z) - Structured Video-Language Modeling with Temporal Grouping and Spatial Grounding [112.3913646778859]
簡単なビデオ言語モデリングフレームワークであるS-ViLMを提案する。
これには、学習領域オブジェクトのアライメントと時間認識機能を促進するために、クリップ間の空間的接地と、クリップ内の時間的グループ化という、2つの新しい設計が含まれている。
S-ViLMは4つの下流タスクにおいて、最先端の手法を大幅に超えている。
論文 参考訳(メタデータ) (2023-03-28T22:45:07Z) - Leaping Into Memories: Space-Time Deep Feature Synthesis [93.10032043225362]
内部モデルから映像を合成するアーキテクチャ非依存の手法であるLEAPSを提案する。
我々は,Kineetics-400に基づく多種多様なアーキテクチャの進化的注目を反転させることにより,LEAPSの適用性を定量的かつ定性的に評価する。
論文 参考訳(メタデータ) (2023-03-17T12:55:22Z) - Alignment-guided Temporal Attention for Video Action Recognition [18.5171795689609]
フレームごとのアライメントは、フレーム表現間の相互情報を増大させる可能性があることを示す。
隣接フレーム間のパラメータフリーパッチレベルのアライメントで1次元の時間的注意を延長するためのアライメント誘導時間注意(ATA)を提案する。
論文 参考訳(メタデータ) (2022-09-30T23:10:47Z) - Leveraging Local Temporal Information for Multimodal Scene
Classification [9.548744259567837]
映像シーン分類モデルは、映像の空間的(ピクセル的に)および時間的(フレーム的に)特性を効果的に捉えなければならない。
トークン列が与えられた個々のトークンに対して文脈化された表現を得るように設計された自己注意型トランスフォーマーモデルは、多くのコンピュータビジョンタスクで人気が高まっている。
本稿では,ビデオフレーム間の局所的・大域的時間的関係を利用して,各フレームの文脈的表現をより良くする自己注意ブロックを提案する。
論文 参考訳(メタデータ) (2021-10-26T19:58:32Z) - StyleVideoGAN: A Temporal Generative Model using a Pretrained StyleGAN [70.31913835035206]
本稿では,映像合成問題に対する新しいアプローチを提案する。
トレーニング済みのStyleGANネットワークを利用することで、トレーニング対象の外観を制御できます。
我々の時間的アーキテクチャは、RGBフレームのシーケンスではなく、StyleGANの潜在符号のシーケンスに基づいて訓練される。
論文 参考訳(メタデータ) (2021-07-15T09:58:15Z) - BiST: Bi-directional Spatio-Temporal Reasoning for Video-Grounded
Dialogues [95.8297116307127]
ビデオにおける高精細クエリのための視覚言語ニューラルフレームワークBi-directional Spatio-Temporal Learning (BiST)を提案する。
具体的には,空間的情報と時間的情報の両方を利用して,2つの特徴空間間の動的情報拡散を学習する。
BiSTは競争性能を達成し、大規模なAVSDベンチマークで適切な応答を生成する。
論文 参考訳(メタデータ) (2020-10-20T07:43:00Z) - Spatio-Temporal Ranked-Attention Networks for Video Captioning [34.05025890230047]
2つの異なる順序でビデオに対する空間的および時間的注意を結合するモデルを提案する。
我々は、MSVDとMSR-VTTの2つのベンチマークデータセットについて実験を行った。
この結果,STモジュールとTSモジュールの相乗効果は最近の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-01-17T01:00:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。